Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 036102    DOI: 10.1088/1674-1056/23/3/036102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Microstructure evolution of zircaloy-4 during Ne ion irradiation and annealing:An in situ TEM investigation

Shen Hua-Hai (申华海)a b, Peng Shu-Ming (彭述明)c, Zhou Xiao-Song (周晓松)c, Sun Kai (孙凯)b, Wang Lu-Ming (王鲁闽)b, Zu Xiao-Tao (祖小涛)a
a School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China;
b Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
c Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  The microstructural evolution of zircaloy-4 was studied, including the amorphization and recrystallization of Zr(Fe, Cr)2 precipitates, and the density of dislocations under in situ Ne ion irradiation and post annealing. The results show that irradiation at a relatively high temperature and dose induces the formation of nanocrystals in pre-amorphized Zr(Fe, Cr)2 precipitates. The recrystallized nanocrystals also have the structure of hcp-Zr(Fe, Cr)2. The formation of the nanocrystals is thought to be the consequence of competition between atomistic disordering and the recrystallization of precipitates under ion irradiation. The free energy of the nanocrystal is lower than that of the amorphous state, which is another reason for the recrystallization of the precipitates. With increased annealing temperature, the density of the nanocrystals is increased. The dislocation density sharply decreases with the increase in the annealing temperature, and its size increases.
Keywords:  recrystallization      dislocation      radiation damage      zircaloy-4  
Received:  26 July 2013      Revised:  18 September 2013      Accepted manuscript online: 
PACS:  61.82.-d (Radiation effects on specific materials)  
  81.10.Jt (Growth from solid phases (including multiphase diffusion and recrystallization))  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
Fund: Project supported by the Key Laboratory of Neutron Physics of China Academy of Engineering Physics (Grant No. 2012AB02), the Fundamental Research Funds for the Central Universities of China (Grant No. ZYGX2012YB017), and the Major Program of the National Natural Science Foundation of China (Grant No. 91126001).
Corresponding Authors:  Zu Xiao-Tao     E-mail:  xtzu@uestc.edu.cn

Cite this article: 

Shen Hua-Hai (申华海), Peng Shu-Ming (彭述明), Zhou Xiao-Song (周晓松), Sun Kai (孙凯), Wang Lu-Ming (王鲁闽), Zu Xiao-Tao (祖小涛) Microstructure evolution of zircaloy-4 during Ne ion irradiation and annealing:An in situ TEM investigation 2014 Chin. Phys. B 23 036102

[1] Négyesi M, Burda J, Bláhová O, Linhart S and Vrtílková V 2011 J. Nucl. Mater. 416 288
[2] Duriez C, Dupont T, Schmet B and Enoch F 2008 J. Nucl. Mater. 380 30
[3] Cockeram B V and Chan K S 2009 J. Nucl. Mater. 393 387
[4] Grosse M, Berg M, Goulet C and Kaestner A 2012 J. Phys: Conference Series 340 012106
[5] Yang W J S 1988 J. Nucl. Mater. 158 71
[6] Hao X P, Wang B Y, Yu R S and Wei L 2007 Acta Phys. Sin. 56 6543
[7] Cui Z G, Gou C J, Hou Q, Mao L and Zhou X S 2013 Acta Phys. Sin. 62 156105 (in Chinese)
[8] Sabol G P 2005 Journal of ASTM International. 2 12942
[9] Peletskii V E and Tereshina E V 2008 High Temp. 46 363
[10] Hengstler-Eger R M, Baldo P, Beck L, Dorner J, Ertl K, Hoffmann P B, Hugenschmidt C, Kirk M A, PetryW, Pikart P and Rempel A 2012 J. Nucl. Mater. 423 170
[11] Lucas G E, Surprenant M, DiMarzo J and Brown G J 1981 J. Nucl. Mater. 101 78
[12] Onimus F, Béchade J L, Duguay C, Gilbon D and Pilvin P 2006 J. Nucl. Mater. 358 176
[13] Oono N, Kasada R, Higuchi T, Sakamoto K, Nakatsuka M, Hasegawa A, Kondo S, Matsui H and Kimura A 2011 J. Nucl. Mater. 419 366
[14] Was G S and Averback R S 2012 Radiation Damage Using Ion Beams (Oxford: Elsevier) pp. 195–221
[15] Boltax A, Foster J P, Weiner R A and Biancheria A 1977 J. Nucl. Mater. 65 174
[16] Etienne A, Hernández-Mayoral M, Genevois C, Radiguet B and Pareige P 2010 J. Nucl. Mater. 400 56
[17] Zu X T, Sun K, Atzmon M, Wang L M, You L P, Wan F R, Busby J T, Was G S and Adamson R B 2005 Philos. Mag. 85 649
[18] Kai J J, Huang W I and Chou H Y 1990 J. Nucl. Mater. 170 193
[19] Bloch M J 1962 J. Nucl. Mater. 6 203
[20] Heera V, Stoemenos J, Kogler R and Skorupa W 1995 J. Appl. Phys. 77 2999
[21] Howe L M and Rainville M H 1977 J. Nucl. Mater. 68 215
[22] Quentin A, Monnet I, Gosset D, Lefranc?ois B and Bouffard S 2009 Nucl. Instr. Meth. B 267 980
[23] Luzzi D E, Mori H, Fujita H and Meshii M 1985 Scripta Metall. Mater. 19 897
[24] Birtcher R C and Wang L M 1991 Nucl. Instr. Meth. B 59–60 966
[25] Wang L M, Wang S X, Ewing R C, Meldrum A, Birtcher R C, Newcomer P P, Weber W J and Matzke H J 2000 Mater. Sci. Engin. A 286 72
[26] Wang L M and Weber W J 1999 Philos. Mag. A 79 237
[27] Lefebvre F and Lemaignan C 1989 J. Nucl. Mater. 165 122
[28] Rodríguez C, Tendler R H, Gallego L J and Alonso J A 1995 J. Mater. Sci. 30 196
[29] Yang W J S, Tucker R P, Cheng B and Adamson R B 1986 J. Nucl. Mater. 138 185
[30] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instr. Meth. B 268 1818
[31] Wang L M, Wang S X, Gong W L, Ewing R C and Weber W J 1998 Mater. Sci. Engin. A 253 106
[32] Nagase T and Umakoshi Y 2010 Intermetallics 18 1803
[33] Brimhall J L 1984 J. Mater. Sci. 19 1818
[34] Doi M and Imura T 1980 J. Mater. Sci. 15 2867
[35] Canet O, Latroche M, Bourée-Vigneron F and Percheron-Guégan A 1994 J. Alloys Compd. 210 129
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[5] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[6] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
[7] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[8] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[9] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[10] Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE
Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(3): 036801.
[11] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[12] Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation
Kai-Heng Shao(邵凯恒), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(11): 116104.
[13] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[14] Total dose test with γ-ray for silicon single photon avalanche diodes
Qiaoli Liu(刘巧莉), Haiyan Zhang(张海燕), Lingxiang Hao(郝凌翔), Anqi Hu(胡安琪), Guang Wu(吴光), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(8): 088501.
[15] Comparison of cavities and extended defects formed in helium-implanted 6H-SiC at room temperature and 750 ℃
Qing Liao(廖庆), Bingsheng Li(李炳生), Long Kang(康龙), Xiaogang Li(李小刚). Chin. Phys. B, 2020, 29(7): 076103.
No Suggested Reading articles found!