Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 026103    DOI: 10.1088/1674-1056/23/2/026103

New observations on hydrogen bonding in ice by density functional theory simulations

Zhang Peng (张鹏), Liu Yang (刘扬), Yu Hui (于惠), Han Sheng-Hao (韩圣浩), Lü Ying-Bo (吕英波), Lü Mao-Shui (吕茂水), Cong Wei-Yan (丛伟艳)
School of Space Science and Physics, Shandong University, Weihai 264209, China
Abstract  In this paper, we report on a series of computational simulations on hydrogen bonding in two ice phases (Ih and Ic) using CASTEP with PW91 and RPBE exchange–correlation based on ab initio density functional theory. The strength of the H-bond is correlated with intramolecular O–H stretching, and the energy splitting exists for both the H-bond and covalent O–H stretching. By analyzing the dispersion relationship of ω(q), we observe the separation of the longitudinal optic (LO) mode from transverse optic (TO) mode at the gamma point, seemingly interpreting the controversial two H-bond peaks in the vibrational spectrum of ice recorded by inelastic incoherent neutron scattering experiments. The test of ambient environment on phonon density of sates (PDOS) shows that the relaxed tetrahedral structure is the most stable structural configuration for water clusters.
Keywords:  density functional theory      ice      hydrogen bonding      LO–TO splitting  
Received:  19 May 2013      Revised:  10 August 2013      Accepted manuscript online: 
PACS:  61.50.Lt (Crystal binding; cohesive energy)  
  61.66.Fn (Inorganic compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11075094).
Corresponding Authors:  Zhang Peng     E-mail:
About author:  61.50.Lt; 61.66.Fn; 31.15.E-

Cite this article: 

Zhang Peng (张鹏), Liu Yang (刘扬), Yu Hui (于惠), Han Sheng-Hao (韩圣浩), Lü Ying-Bo (吕英波), Lü Mao-Shui (吕茂水), Cong Wei-Yan (丛伟艳) New observations on hydrogen bonding in ice by density functional theory simulations 2014 Chin. Phys. B 23 026103

[1] Ford R C, Ruffle S V, Michalarias I, Beta I, Miller A and Li J C 2004 J. Am. Chem. Soc. 126 4682
[2] Zhang P, Han S H, Zhang Y, Ford R C and Li J C 2008 Chem. Phys. 345 196
[3] Ren X P, Zhou B, Li L T and Wang C L 2013 Chin. Phys. B 22 016801
[4] He J X, Lu H J, Liu Y, Wu F M, Nie X C, Zhou X Y and Chen Y Y 2012 Chin. Phys. B 21 054703
[5] Li J C and Ross D K 1993 Nature 365 327
[6] Li J C 1996 J. Chem. Phys. 105 6733
[7] Dang L X and Chang T M 1997 J. Chem. Phys. 106 8149
[8] Burnham C J, Li J C and Leslie M 1997 J. Phys. Chem. B 101 6192
[9] Burnham C J, Li J C, Xantheas S S and Leslie M 1999 J. Chem. Phys. 110 4566
[10] Dong S L and Li J C 2000 Physica B 276–278 469
[11] Plummer P L M 2007 Physics and Chemistry of Ice (London: Royal Society of Chemistry) p. 505
[12] Aswani R and Li J C 2007 J. Mol. Liq. 134 120
[13] Tse J S and Klug D D 1995 Phys. Lett. A 198 464
[14] Zhang P, Tian L, Zhang Z P, Shao G and Li J C 2012 J. Chem. Phys. 137 044504
[15] Zhang P, Han S H, Yu H and Liu Y 2013 RSC Adv. 3 6646
[16] Morrison I and Jenkins S 1999 Physica B 263–264 442
[17] He X, Sode1 O, Xantheas S S and Hirata S 2012 J. Chem. Phys. 137 204505
[18] Klug D D, Tse J S and Whalley E 1991 J. Chem. Phys. 95 7011
[19] Fletcher N H 1970 The Chemical Physics of Ice (Cambridge: Cambridge University Press)
[20] Brill Von R and Tippe A 1967 Acta Crystallogr. 23 343
[21] Kuhs W F and Lehmann M S 1981 Nature 294 432
[22] Kuhs W F and Lehmann M S 1983 J. Phys. Chem. 87 4312
[23] Sim F, St-Amant A, Papai I and Salahub D R 1992 J. Am. Chem. Soc. 114 4391
[24] Pauling L 1935 J. Am. Chem. Soc. 57 2680
[25] Bernal J D and Fowler R H 1933 J. Chem. Phys. 1 515
[26] Parravicini G P and Resca L 1973 Phys. Rev. B 8 3009
[27] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Zeitschrift für Kristallographie 220 567
[28] Henry C H and Hopfield J J 1965 Phys. Rev. Lett. 15 964
[29] Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
[30] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[31] Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
[32] Kuo J L and Klein M L 2004 J. Phys. Chem. B 108 19634
[33] Klug D D and Whalley E 1978 J. Glaciology 21 55
[34] Marchi M, Tse J S and Klein M L 1987 J. Chem. Soc. Faraday Trans. 83 1867
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[5] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[6] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[7] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[8] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[9] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[10] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[11] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[12] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[13] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[14] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[15] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
No Suggested Reading articles found!