Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 019201    DOI: 10.1088/1674-1056/23/1/019201
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Continuity and momentum equations for moist atmospheres

Ran Ling-Kun (冉令坤), Gao Shou-Ting (高守亭), Cao Jie (曹洁)
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  The moist atmosphere with occurring precipitation is considered to be a multiphase fluid composed of dry air, water vapor and hydrometeors. These compositions move with different velocities: they take a macroscopic motion with a reference velocity and a relative motion with a velocity deviated from the reference velocity. The reference velocity can be chosen as the velocities of dry air, a gas mixture and the total air mixture. The budget equations of continuity and momentum are formulated in the three reference-velocity frames. It is shown that the resulting equations are dependent on the chosen reference velocity. The diffusive flux due to compositions moving with velocities deviated from the reference velocity and the internal sources due to the phase transitions of water substances result in additional source terms in continuity and momentum equations. A continuity equation of the total mass is conserved and free of diffusive flux divergence if the reference velocity is referred to the velocity of the total air mixture. However, continuity equations in the dry-air and gas-mixture frames are not conserved due to the mass diffusive flux divergence. The diffusive flux introduces additional source terms in the momentum equation. In the dry-air frame, the diffusive flux of water substances and the phase transitions of water substances contribute to the change of the total momentum. The additional sources of total momentum in the frame of a gas mixture are associated with the diffusive flux of hydrometeors, the phase transitions of hydrometeors and the gas-mixture diffusive flux. In the frame of total air mixture, the contribution to the total momentum comes from the diffusive flux of all atmospheric compositions instead of the phase transitions. The continuity and momentum equations derived here are more complicated than the traditional model equations. With increasing computing power, it becomes possible to simulate atmospheric processes with these sophisticated equations. It is helpful to the improvement of precipitation forecast.
Keywords:  diffusive flux      phase transition      reference velocity  
Received:  02 February 2013      Revised:  03 June 2013      Accepted manuscript online: 
PACS:  92.60.N- (Cloud physics and chemistry)  
  92.60.Nv (Cloud physics and chemistry)  
  92.60.hk (Convection, turbulence, and diffusion)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB421505), the Key Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05), the National Natural Sciences Foundation of China (Grant Nos. 41175060, 40930950, and 41005005), the Project of CAMS, China (Grant No. 2011LASW-B15), and the Spectial Scientific Research Fund of Meteorological Public Welfare of Ministry of Sciences and Technology, China (Grant No. GYHY200906004).
Corresponding Authors:  Ran Ling-Kun     E-mail:  rlk@mail.iap.ac.cn

Cite this article: 

Ran Ling-Kun (冉令坤), Gao Shou-Ting (高守亭), Cao Jie (曹洁) Continuity and momentum equations for moist atmospheres 2014 Chin. Phys. B 23 019201

[1] Gao S T and Li X 2008 Cloud-resolving Modeling of Convective Processes (Berlin: Springer) p. 206
[2] Yuan H, Lu C, McGinley J A, Schultz P J, Jamison B D, Wharton L and Anderson C J 2009 Wea. Forecasting 24 18
[3] Feng G L, Dong W J and Jia X J 2004 Chin. Phys. 13 413
[4] Luo Z X, Sun Z A and Ping F 2011 Chin. Phys. B 20 049201
[5] Cui X P and Li X F 2011 Chin. Phys. B 20 109201
[6] Jiang Z, Li X F, Zhou Y S and Gao S T 2012 Chin. Phys. B 21 054215
[7] Rogers R R and Yau M K 1989 A Short Course in Cloud Physics (3rd edn) (New York: Pergamon Press) p. 293
[8] Schubert W H, Hausman S A, Garcia M, Ooyama K V and Kuo H C 2001 J. Atmos. Sci. 58 3148
[9] Gray M E 1999 Q. J. Roy. Meteorol. Soc. 125 1589
[10] Gao S, Wang X and Zhou Y 2004 Geophys. Res. Lett. 31 L12113
[11] Mofor L A and Lu C 2009 Prog. Natural Sci. 19 285
[12] Qiu C J, Bao J W and Xu Q 1993 Mon. Weather Rev. 121 853
[13] Ran L K, Yang W X and Chu Y L 2010 Chin. Phys. B 19 079201
[14] Gary M L and Yablonsky R M 2004 J. Atmos.Sci. 61 1674
[15] Doms G and Schattler U 2002 A Description of the Nonhydrostatic Regional Model LM. Part I: Dynamics and Numerics (Deutscher Wetterdienst: Offenbach) p. 134
[16] Lackmann G M and Yablonsky R M 2004 J. Atmos. Sci. 61 1674
[17] Dai X G, Wang P and Zhang K J 2012 Chin. Phys. B 21 119201
[18] Cui X P 2008 Chin. Phys. B 17 2304
[19] Satoh M 2003 Mon. Weather Rev. 131 1033
[20] Qian Z W, Shao D Y, Li X H and Wang D Z 1999 Chin. Phys. 8 27
[21] Wacker U and Herbert F 2003 Tellus 55 247
[22] Wacker U, Frisius T and Herbert F 2006 J. Atmos. Sci. 63 2642
[23] Ooyama K V 2001 J. Atmos. Sci. 58 2073
[24] Bannon P 2002 J. Atmos. Sci. 59 1967
[25] Bott A 2008 Atmospheric Research 89 262
[26] Zhou J, Cai L and Zhou F Q 2008 Chin. Phys. B 17 1535
[27] Zdunkowski W and Bott A 2003 Dynamics of the Atmosphere. A Course in Theoretical Meteorology (New York: Cambridge University Press) p. 738
[28] Fortak H 2004 Meteorol. Z. 13 499
[29] Kundu P K and Cohen I M 2004 Fluid Mechanics (3rd edn) (London: Elsevier Press) p. 759
[30] Lin Y, Farley R D and Orville H D 1983 J. Climate Appl. Meteor. 22 1065
[31] Xue M, Droegemeier K K, Wong V, Shapiro A, Brewster K, Carr F, Weber D, Liu Y and Wang D 2001 Meteorol. Atmos. Phys. 76 143
[32] Cotton W R, Bryan G H and Heever S C 2011 Storm and Cloud Dynamics (2nd edn) (New York: Academic Press) p. 26
[33] Zdunkowski W and Bott A 2004 Thermodynamics of the Atmosphere. A Course in Theoretical Meteorology (New York: Cambridge University Press) p. 251
[34] Stull R B 1988 An Introduction to Boundary Layer Meteorology (Dordrecht: Kluwer Academic Publishers) p. 666
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!