Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 017801    DOI: 10.1088/1674-1056/23/1/017801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Numerical investigation of the enhanced unidirectional surface plasmon polaritons generator

Zhang Zhi-Dong (张志东)a, Wang Hong-Yan (王红艳)a, Zhang Zhong-Yue (张中月)b, Wang Hui (王辉)a
a School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
b School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China
Abstract  A unidirectional surface plasmon polaritons (SPPs) generator with greatly enhanced generation efficiency is proposed. The SPPs generator consists of an asymmetric single nanoslit coated with a polyviny alcohol (PVA) film and a silver rectangle block. The generation efficiency of this SPPs generator is investigated using the finite difference time domain method. Due to the presence of the silver rectangle block, the SPPs generation efficiency of the asymmetric single nanoslit with PVA film can be greatly enhanced and the corresponding wavelength with the maximum enhancement factor can be tuned flexibly. The influence of the structural parameters on the generation efficiency is also investigated for the enhanced unidirectional SPPs generator.
Keywords:  surface plasmon polariton      surface plasmon polaritons (SPPs) generator      asymmetric single-slit      finite difference time domain method  
Received:  07 April 2013      Revised:  26 June 2013      Accepted manuscript online: 
PACS:  78.68.+m (Optical properties of surfaces)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174237 and 10974161), the National Basic Research Program of China (Grant No. 2013CB328904), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. SWJTU12CX084 and SWJTU2010ZT06), and the Innovation Fund for Ph. D. Student of Southwest Jiaotong University, China.
Corresponding Authors:  Wang Hong-Yan     E-mail:  hongyanw@home.swjtu.edu.cn

Cite this article: 

Zhang Zhi-Dong (张志东), Wang Hong-Yan (王红艳), Zhang Zhong-Yue (张中月), Wang Hui (王辉) Numerical investigation of the enhanced unidirectional surface plasmon polaritons generator 2014 Chin. Phys. B 23 017801

[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N D, Akimov A V, Jo M H, Lukin M D and Park H 2009 Nat. Phys. 5 475
[3] Huang Y, Ye H A, Li S Q and Dou Y F 2013 Chin. Phys. B 22 027301
[4] Yu Z Z, Feng Y J, Wang Z B, Zhao J M and Jiang T 2013 Chin. Phys. B 22 034102
[5] Zhang Z Y, Wang J D, Zhao Y N, Lu D and Xiong Z H 2011 Plasmonics 6 773
[6] Yu Z Z, Feng Y J, Wang Z B, Zhao J M and Jiang T 2013 Chin. Phys. B 22 034102
[7] Lee T W and Gray S K 2005 Opt. Express 13 9652
[8] Zhan C L, Ren X F, Huang Y F, Duan K M and Guo G C 2008 Chin. Phys. Lett. 25 559
[9] Battula A and Chen S C 2006 Appl. Phys. Lett. 89 131113
[10] Groep J, Spinelli P and Polman A 2012 Nano Lett. 12 3138
[11] Li X W, Tan Q F, Bai B F and Jin G F 2011 Appl. Phys. Lett. 98 251109
[12] Xu T, Zhao Y H, Gan D C, Wang C T, Du C L and Luo X G 2008 Appl. Phys. Lett. 92 101501
[13] Li Z, Zhang J S, Yan H F and Gong Q H 2007 Chin. Phys. Lett. 24 3233
[14] Kim H and Lee B 2009 Plasmonics 4 153
[15] Chen J J, Li Z, Yue S, Xiao J H and Gong Q H 2012 Nano Lett. 12 2494
[16] Chen J J, Li Z, Yue S and Gong Q H 2010 Appl. Phys. Lett. 97 041113
[17] Chen J J, Li Z, Yue S and Gong Q H 2011 J. Appl. Phys. 109 073102
[18] Chen J J, Li Z, Lei M, Yue S, Xiao J H and Gong Q H 2011 Opt. Express 19 26463
[19] Chen J J, Li Z, Yue S and Gong Q H 2011 Nano Lett. 11 2933
[20] Li W D, Hu J and Chou S Y 2011 Opt. Express 19 21098
[21] Ebbesen T W, Genet C and Bozhevolnyi S I 2008 Phys. Today 61 44
[22] Chen J J, Li Z and Gong Q H 2009 Chin. Phys. B 18 3535
[23] Verhagen E, Kuipers L K and Polman A 2010 Nano Lett. 10 3665
[24] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photonics 4 83
[25] Kekatpure R D, Hryciw A C, Barnard E S, Brongersma M L 2007 Appl. Opt. 46 2229
[26] Palik E. D 1985 Handbook of Optical Constants of Solids (Florida: Academic Press) p. 355
[1] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[2] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[3] Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
Huan Jiang(蒋欢), Xiang-Yu Cao(曹祥玉), Tao Liu(刘涛), Liaori Jidi(吉地辽日), and Sijia Li(李思佳). Chin. Phys. B, 2022, 31(10): 104101.
[4] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[5] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[6] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[7] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[8] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[9] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[10] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[11] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[12] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[13] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[14] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[15] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
No Suggested Reading articles found!