Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 126601    DOI: 10.1088/1674-1056/22/12/126601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics study of thermal stress and heat propagation in tungsten under thermal shock

Fu Bao-Qin (付宝勤), Lai Wen-Sheng (赖文生), Yuan Yue (袁悦), Xu Hai-Yan (徐海燕), Li Chun (李纯), Jia Yu-Zhen (贾玉振), Liu Wei (刘伟)
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract  Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding to the collective displacement of atoms, is analyzed with the Lagrangian atomic stress method, of which the reliability is also analyzed. The stress wave velocity corresponds to the speed of sound in the material, which is not dependent on the thermal shock energy. The peak pressure of a normal stress wave increases with the increase of thermal shock energy. We analyze the temperature evolution of the thermal shock region according to the Fourier transformation. It can be seen that the “obvious” velocity of heat propagation is less than the velocity of the stress wave; further, that the thermo-elastic stress wave may contribute little to the transport of kinetic energy. The heat propagation can be described properly by the heat conduction equation. These results may be useful for understanding the process of the thermal shock of tungsten.
Keywords:  molecular dynamics simulation      thermal shock      thermo-elastic stress      heat propagation      tungsten  
Received:  17 January 2013      Revised:  30 May 2013      Accepted manuscript online: 
PACS:  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  66.10.cd (Thermal diffusion and diffusive energy transport)  
  66.70.Df (Metals, alloys, and semiconductors)  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2013GB109004) and the National Natural Science Foundation of China (Grant Nos. 51071095 and 50971077).
Corresponding Authors:  Fu Bao-Qin, Liu Wei     E-mail:  bqfuthu@163.com;liuw@mail.tsinghua.edu.cn

Cite this article: 

Fu Bao-Qin (付宝勤), Lai Wen-Sheng (赖文生), Yuan Yue (袁悦), Xu Hai-Yan (徐海燕), Li Chun (李纯), Jia Yu-Zhen (贾玉振), Liu Wei (刘伟) Molecular dynamics study of thermal stress and heat propagation in tungsten under thermal shock 2013 Chin. Phys. B 22 126601

[1] Hirai T, Pintsuk G, Linke J and Batilliot M 2009 J. Nucl. Mater. 390 751
[2] Yuan Y, Greuner H, Boswirth B, Krieger K, Luo G N, Xu H Y, Fu B Q, Li M and Liu W 2013 J. Nucl. Mater. 433 523
[3] Gu X and Urbassek H M 2006 J. Phys. D: Appl. Phys. 39 4621
[4] Upadhyay A K and Urbassek H M 2006 Phys. Rev B 73 35421
[5] Giniatulin R, Gervash A, Komarov V L, Makhankov A, Mazul I, Litunovsky N and Yablokov N 1998 Fusion Eng. Des. 39 385
[6] Bondarenko G G and Udris Y Y 1998 Fusion Eng. Des. 39 419
[7] Tokunaga K, Yoshida N, Kubota Y, Noda N, Imamura Y, Oku T, Kurumada A, Sogabe T, Kato T and Plochl L 2000 Fusion Eng. Des. 49–50 371
[8] Visca E, Libera S, Orsini A, Riccardi B and Sacchetti M 2000 Fusion Eng. Des. 49 377
[9] Masaki K, Taniguchi M, Miyo Y, Sakurai S, Sato K, Ezato K, Tamai H, Sakasai A, Matsukawa M, Ishida S and Miya N 2002 Fusion Eng. Des. 61–62 171
[10] Liu X, Tamura S, Tokunaga K, Yoshida N, Noda N, Yang L and Xu Z 2004 J. Nucl. Mater. 329 687
[11] Linke J, Escourbiac F, Mazul I V, Nygren R, Rodig M, Schlosser J and Suzuki S 2007 J. Nucl. Mater. 367 1422
[12] Norajitra P, Gervash A, Giniyatulin R, Hirai T, Janeschitz G, Krauss W, Kuznetsov V, Makhankov A, Mazul I, Ovchinnikov I, Reiser J and Widak V 2009 J. Nucl. Mater. 386–388 813
[13] Li H, Chen J L, Li J G and Sun X J 2009 Fusion Eng. Des. 84 1
[14] Greuner H, Boswirth B, Boscary J, Friedrich T, Lavergne C, Linsmeier C, Schlosser J and Wiltner A 2009 Fusion Eng. Des. 84 848
[15] Visca E, Escourbiac F, Libera S, Mancini A, Mazzone G, Merola M and Pizzuto A 2009 Fusion Eng. Des. 84 309
[16] Gavila P, Riccardi B, Constans S, Jouvelot J L, Vastra I B, Missirlian M and Richou M 2011 Fusion Eng. Des. 86 1652
[17] Federici G 2006 Phys. Scr. 2006 1
[18] Fu B Q, Lai W S, Yuan Y, Xu H Y and Liu W 2012 J. Nucl. Mater. 427 268
[19] Li M, Wang J and Hou Q 2012 J. Nucl. Mater. 423 22
[20] Belonoshko A B 1997 Science 275 955
[21] Zhakhovskii V V, Nishihara K, Anisimov S I and Inogamov N A 2000 JETP Lett. 71 167
[22] Ho J R, Twu C J and Hwang C C 2001 Phys. Rev. B 64 14302
[23] Urbassek H M, Gu X and Rethfeld B 2006 Comp. Mater. Sci. 38 51
[24] Zhakhovskii V V and Inogamov N A 2010 JETP Lett. 92 521
[25] Xia R H, Tian X G and Shen Y P 2010 Acta Mech. Sin. 26 599
[26] Fu B, Lai W, Yuan Y, Xu H and Liu W 2013 Nucl. Instrum. Method B 303 4
[27] Fu B Q, Lai W S, Yuan Y, Xu H Y and Liu W 2013 Nucl. Instrum. Method B 303 162
[28] Fu B Q, Liu W and Li Z L 2009 Appl. Surf. Sci. 255 8511
[29] Finnis M W and Sinclair J E 1984 Philos. Mag. A 50 45
[30] Dai X D, Kong Y, Li J H and Liu B X 2006 J. Phys: Condens. Matter 18 4527
[31] Zhou M 2003 Proc. Roy. Soc. Lond. Ser. A: Math. Phys. Engin. Sci. 459 2347
[32] Liu B and Qiu X 2009 J. Comput. Theor. Nanosci. 6 1081
[33] Wang J W, Shang X C and Lü G C 2011 Adv. Mater. Res. 179 513
[34] Beardmore P and Hull D 1965 J. Less Common Metals 9 168
[35] Roundy D, Krenn C R, Cohen M L and Morris J W Jr 2001 Philos. Mag. A 81 1725
[36] Oligschleger C and Schon J C 1999 Phys. Rev. B 59 4125
[37] Stevens R J, Smith A N and Norris P M 2005 J. Heat Transfer 127 315
[38] Stoner R J and Maris H J 1993 Phys. Rev. B 48 16373
[1] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[5] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[6] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[7] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[8] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[9] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[10] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[11] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[12] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[13] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[14] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[15] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
No Suggested Reading articles found!