Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 126301    DOI: 10.1088/1674-1056/22/12/126301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Investigations of high-pressure and high-temperature behaviors of the newly-discovered willemite-Ⅱ and post-phenacite silicon nitrides

Chen Dong (陈东)
College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
Abstract  Using the first-principles method of the plane-wave pseudo-potential, the structural properties of the newly-discovered willemite-Ⅱ Si3N4 (wⅡ phase) and post-phenacite Si3N4 (δ phase) are investigated. The α phase is predicted to undergo a first-order α→wⅡ phase transition at 18.6 GPa and 300 K. Within the quasi-harmonic approximation (QHA), the α→wⅡ phase boundary is also obtained. When the well-known β→γ transition is suppressed by some kinetic reasons, the β→δ phase transformation could be observed in the phase diagram. Besides, the temperature dependences of the cell volume,thermal expansion coefficient, bulk modulus, specific heat, entropy and Debye temperature of the involved phases are determined from the non-equilibrium free energies. The thermal expansion coefficients of wⅡ-Si3N4 show no negative values in a pressure range of 0-30 GPa, which implies that the wⅡ-Si3N4 is mechanically stable. More importantly, the δ-Si3N4 is found to be a negative thermal expansion material. Further experimental investigations may be required to determine the physical properties of wⅡ- and δ-Si3N4 with higher reliability.
Keywords:  first-principles      nitrides      phase boundary      thermal property  
Received:  23 March 2013      Revised:  13 May 2013      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  81.30.-t (Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)  
  65.40.-b (Thermal properties of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11005088 and 11105115), the Key Project of Henan Educational Committee, China (Grant No. 12A140010), and the Special Foundation for Young Teacher of Xinyang Normal University, China (Grant No. 2011084).
Corresponding Authors:  Chen Dong     E-mail:  chchendong2010@163.com

Cite this article: 

Chen Dong (陈东) Investigations of high-pressure and high-temperature behaviors of the newly-discovered willemite-Ⅱ and post-phenacite silicon nitrides 2013 Chin. Phys. B 22 126301

[1] Southworth D R, Barton R A, Verbridge S S, Ilic B, Fefferman A D, Craighead H G and Parpia J M 2009 Phys. Rev. Lett. 102 225503
[2] Zhang C, Sun J X, Tian R G and Zou S Y 2007 Acta Phys. Sin. 56 5969 (in Chinese)
[3] Kruger M B, Nguyen J H, Li Y M, Caldwell W A, Manghnani M H and Jeanloz R 1997 Phys. Rev. B 55 3456
[4] Ding W G, Sang Y G, Yu W, Yang Y B, Teng X Y and Fu G S 2012 Acta Phys. Sin. 61 247304 (in Chinese)
[5] Ponce F A and Bour D P 1997 Nature 386 351
[6] Liu H X, Li B, Li J, Yuan B and Hao Y 2010 Chin. Phys. B 19 127303
[7] Xu B, Dong J, McMillan P, Shebanova O and Salamat A 2011 Phys. Rev. B 84 014113
[8] Kuwabara A, Matsunaga K and Tanaka I 2008 Phys. Rev. B 78 064104
[9] Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fuess H, Kroll P and Boehler R 1999 Nature 400 340
[10] Wang L G, Sun J X, Yang W and Tian R G 2008 Acta Phys. Pol. A 114 807
[11] Kroll P 2003 J. Solid State Chem. 176 530
[12] Ding W C, Liu Y, Zhang Y, Guo J C, Zuo Y H, Cheng B W, Yu J Z and Wang Q M 2009 Chin. Phys. B 18 3044
[13] Togo A and Kroll P 2008 J. Comput. Chem. 29 2255
[14] Wendel J A and Goddard Ⅲ W A 1992 J. Chem. Phys. 97 5048
[15] Ching W Y, Xu Y N, Gale J D and Rühle M 1998 J. Am. Ceram. Soc. 81 3189
[16] Tatsumi K, Tanaka I and Adachi H 2002 J. Am. Ceram. Soc. 85 7
[17] Jiang J Z, Lindelov H, Gerward L, Ståhl K, Recio J M, Mori-Sanchez P, Carlson S, Mezouar M, Dooryhee E, Fitch A and Frost D J 2002 Phys. Rev. B 65 161202
[18] Fang C M, de Wijs G A, Hintzen H T and de With G 2003 J. Appl. Phys. 93 5175
[19] Ching W Y, Mo S D, Ouyang L Z and Rulis P 2002 J. Am. Ceram. Soc. 85 75
[20] Dong J J, Sankey O F, Deb S K, Wolf G and McMillan P F 2000 Phys. Rev. B 61 11979
[21] Yashima M, Ando Y and Tabira Y 2007 J. Phys. Chem. B 111 3609
[22] Liu A Y and Cohen M L 1990 Phys. Rev. B 41 10727
[23] Vanderbilt D 1990 Phys. Rev. B 41 7892
[24] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Blanco M A, Francisco E and Luaňa V 2004 Comput. Phys. Commun. 158 57
[28] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 238
[29] Sin’ko G V and Smirnov N V 2002 J. Phys.: Condens. Matter 14 6989
[30] Hu Q M, Lu S and Yang R 2008 Phys. Rev. B 78 052102
[31] Yu B H, Chen D, Li Y B and Jia Y L 2012 Acta Metall. Sin. (Engl. Lett.) 25 131
[32] Yu B H and Chen D 2012 Chin. Phys. B 21 060508
[33] Wendel J A and Goddard Ⅲ W A 1992 J. Chem. Phys. 97 5048
[34] Yu B H and Chen D 2012 Physica B 407 4660
[35] Debye P 1912 Ann. Phys. 39 789
[36] Terki R, Bertrand G, Aourag H and Coddet C 2008 J. Alloys Compd. 456 508
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!