Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 098801    DOI: 10.1088/1674-1056/22/9/098801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dependence of InGaN solar cell performance on polarization-induced electric field and carrier lifetime

Yang Jing (杨静)a, Zhao De-Gang (赵德刚)a, Jiang De-Sheng (江德生)a, Liu Zong-Shun (刘宗顺)a, Chen Ping (陈平)a, Li Liang (李亮)a, Wu Liang-Liang (吴亮亮)a, Le Ling-Cong (乐伶聪)a, Li Xiao-Jing (李晓静)a, He Xiao-Guang (何晓光)a, Wang Hui (王辉)b, Zhu Jian-Jun (朱建军)b, Zhang Shu-Ming (张书明)b, Zhang Bao-Shun (张宝顺)b, Yang Hui (杨辉)a b
a State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p-i-n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polarization in the i-region could be totally shielded when the Mg-induced net acceptor doping concentration is sufficiently high. The polarization-induced potential barriers are reduced and the short circuit current density is remarkably increased from 0.21 mA/cm2 to 0.95 mA/cm2 by elevating the Mg doping concentration. The carrier lifetime determined by defect density of i-InGaN also plays an important role in determining the photovoltaic properties of solar cell. The short circuit current density severely degrades, and the performance of InGaN solar cell becomes more sensitive to the polarization when carrier lifetime is lower than the transit time. This study demonstrates that the crystal quality of InGaN absorption layer is one of the most important challenges in realizing high efficiency InGaN solar cells.
Keywords:  nitride materials      solar cell      polarization  
Received:  16 January 2013      Revised:  04 March 2013      Accepted manuscript online: 
PACS:  88.40.hj (Efficiency and performance of solar cells)  
  81.05.Ea (III-V semiconductors)  
  78.40.Fy (Semiconductors)  
Fund: Project support by the National Science Fund for Distinguished Young Scholars of China (Grant No. 60925017), the National Natural Science Foundation of China (Grant Nos. 10990100, 60836003, and 60976045), and the National Basic Research Program of China (Grant No. 2007CB936700).
Corresponding Authors:  Zhao De-Gang     E-mail:  dgzhao@red.semi.ac.cn

Cite this article: 

Yang Jing (杨静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Chen Ping (陈平), Li Liang (李亮), Wu Liang-Liang (吴亮亮), Le Ling-Cong (乐伶聪), Li Xiao-Jing (李晓静), He Xiao-Guang (何晓光), Wang Hui (王辉), Zhu Jian-Jun (朱建军), Zhang Shu-Ming (张书明), Zhang Bao-Shun (张宝顺), Yang Hui (杨辉) Dependence of InGaN solar cell performance on polarization-induced electric field and carrier lifetime 2013 Chin. Phys. B 22 098801

[1] Nakamura S and Fasol G 1997 The Blue Laser Diode (New York: Springer) p. 7
[2] Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
[3] Xue J J, Chen D J, Liu B, Xie Z L, Jiang R L, Zhang R and Zheng Y D 2009 Chin. Phys. Lett. 26 098102
[4] Wu J, Walukiewicz W, Yu K M, Shan W, Ager J W, Haller E E, Lu H, Schaff W J, Metzger W K and Kurtz S 2003 J. Appl. Phys. 94 6477
[5] Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang H, Wang J F and Yang H 2012 Chin. Phys. B 21 087802
[6] Elsner J, Jones R, Sitch P K, Porezag V D and Frauenheim T 1997 Phys. Rev. Lett. 79 3672
[7] Wierer J J, Fischer A J and Koleske D D 2010 Appl. Phys. Lett. 96 051107
[8] Park Y S, Lee H S, Na J H, Kim H J, Si S M, Kim H M, Kang T W and Oh J E 2003 J. Appl. Phys. 94 800
[9] Wang C H, Ke C C, Lee C Y, Chang S P, Chang W T, Li J C, Li Z Y, Yang H C, Kuo H C, Lu T C and Wang S C 2010 Appl. Phys. Lett. 97 261103
[10] Li Z Q, Lestradet M, Xiao Y G and Li S 2011 Phys. Stat. Sol. A 208 928
[11] Lestrade M, Li Z Q, Xiao Y G and Li Z M S 2011 Opt. Quantum Electron. 42 699
[12] Rosner S J, Carr E C, Ludowise M J, Giroolami G and Erikson H I 1997 Appl. Phys. Lett. 70 420
[13] Jiang D S, Jahn U, Chen J, Li D Y, Zhang S M, Zhu J J, Zhao D G, Liu Z S, Yang H and Ploog K 2008 J Mater. Sci.: Mater. Electron. 19 S58
[14] Mathisa S K, Romanovb A E, Chena L F, Beltzc G E, Pomped W and Speck J S 2001 J.Cryst. Growth 231 371
[15] Cai X M, Zeng S W and Zhang B P 2009 Electron. Lett. 45 1266
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[4] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[9] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[10] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[11] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[12] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[13] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
No Suggested Reading articles found!