Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 094204    DOI: 10.1088/1674-1056/22/9/094204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Measurement of intensity difference squeezing via non-degenerate four-wave mixing process in an atomic vapor

Yu Xu-Dong (于旭东), Meng Zeng-Ming (孟增明), Zhang Jing (张靖)
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  We report the measurement of the intensity difference squeezing via the non-degenerate four-wave mixing process in a rubidium atomic vapor medium. Two pairs of balanced detection systems are employed to measure the probe and the conjugate beams, respectively. It is convenient to get the quantum shot noise limit, the squeezed and the amplified noise power spectra. We also investigate the influence of the input extra quadrature amplitude noise of the probe beam. The influence of the extra noise can be minimized and the squeezing can be optimized under the proper parameter condition. We measure the-3.7-dB intensity difference squeezing when the probe beam has a 3-dB extra quadrature amplitude noise. This result is slightly smaller than-4.1 dB when the ideal coherent light (no extra noise) for the probe beam is used.
Keywords:  four-wave mixing process      intensity difference squeezing      self-balanced detection  
Received:  31 December 2012      Revised:  23 February 2013      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921601), the National Natural Science Foundation of China (Grant No. 11234008), the National Natural Science Foundation of China for Excellent Research Team (Grant No. 61121064), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401130001).
Corresponding Authors:  Zhang Jing     E-mail:  jzhang74@yahoo.com; jzhang74@sxu.edu.cn

Cite this article: 

Yu Xu-Dong (于旭东), Meng Zeng-Ming (孟增明), Zhang Jing (张靖) Measurement of intensity difference squeezing via non-degenerate four-wave mixing process in an atomic vapor 2013 Chin. Phys. B 22 094204

[1] Braunstein S L and Pati A K 2003 Quantum Information with Continuous Variables (Dordrecht: Kluwer Academic Press)
[2] Cerf N, Leuchs G and Polzik E S 2007 Quantum Information with Continuous Variables of Atoms and Light (London: Imperial College Press)
[3] Weedbrook C, Pirandola S, Garcia P R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[4] Shang Y N, Yan Z H, Jia X J, Su X L and Xie C D 2011 Chin. Phys. B 20 034209
[5] Yan W and Zhang W J 2007 Chin. Phys. 16 2885
[6] Yuen H P and Shapiro J H 1979 Opt. Lett. 4 334
[7] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2409
[8] McCormick C F, Boyer V, Arimondo E and Lett P D 2007 Opt. Lett. 32 178
[9] Glorieux Q, Guidoni L, Guibal S, Likforman J P and Coudreau T 2011 Phys. Rev. A 84 053826
[10] Liu C J, Jing J T, Zhou Z F, Pooser R C, Hudelist F, Zhou L and Zhang W P 2011 Opt. Lett. 36 2979
[11] Wu L A, Kimble H J, Hall J L and Wu H F 1986 Phys. Rev. Lett. 57 2520
[12] Boyer V, Marino A M, Pooser R C and Lett P D 2008 Science 321 544
[13] Camacho R M, Vudyasetu P K and Howell J C 2009 Nature Photon. 3 103
[14] Marino A M, Pooser R C, Boyer V and Lett P D 2009 Nature 457 859
[15] Zhang J, Zhang T C, Zhang K S, Xie C D and Peng K C 2000 J. Opt. Soc. Am. B 17 1920
[16] Zavatta A, Marin F and Giacomelli G 2002 Phys. Rev. A 66 043805
[17] Louisell W H, Yariv A and Siegmann A E 1961 Phys. Rev. 124 1646
[18] Gordon J P, Louisell W H and Walker L R 1963 Phys. Rev. 129 481
[19] McCormick C F, Marino A M, Boyer V and Lett P D 2008 Phys. Rev. A 78 043816
[20] Jasperse M, Turner L D and Scholten R E 2011 Opt. Express 19 3765
[21] Pooser R C, Marino A M, Boyer V, Jones K M and Lett P D 2009 Opt. Express 17 16722
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[3] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[9] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
[10] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[11] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[12] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[13] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[14] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[15] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
No Suggested Reading articles found!