Abstract The Cornell potential that consists of Coulomb and linear potentials has received a great deal of attention in particle physics. In this paper, we present the exact solutions of the Dirac equation with the pseudoscalar Cornell potential under spin and pseudospin symmetry limits. The energy eigenvalues and corresponding eigenfunctions are given in closed form.
Corresponding Authors:
M. Hamzavi
E-mail: majid.hamzavi@gmail.com
Cite this article:
M. Hamzavi, A. A. Rajabi Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension 2013 Chin. Phys. B 22 090301
[1]
Ginocchio J N 2005 Phys. Rep. 414 165
[2]
Bohr A, Hamamoto I and Mottelson B R 1982 Phys. Scr. 26 267
[3]
Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987 Phys. Rev. Lett. 59 1405
[4]
Troltenier D, Bahri C and Draayer J P 1995 Nucl. Phys. A 586 53
[5]
Page P R, Goldman T and Ginocchio J N 2001 Phys. Rev. Lett. 86 204
[6]
Hecht K T and Adler A 1969 Nucl. Phys. A 137 129
[7]
Arima A, Harvey M and Shimizu K 1969 5 30 517
[8]
Ginocchio J N, Leviatan A, Meng J and Zhou S G 2004 Phys. Rev. C 69 034303
[9]
Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[10]
Quigg C and Rosner J L 1979 Phys. Rep. 56 167
[11]
Chaichian M and Kokerler R 1980 Ann. Phys. 124 61
[12]
Bykov A A, Dremin I M and Leonidov A V 1984 Sov. Phys. Usp. 27 321
[13]
Plante G and Antippa A F 2005 J. Math. Phys. 46 062108
[14]
Stack J D 1984 Phys. Rev. D 29 1213
[15]
Bali G S, Schilling K and Wachter A 1997 Phys. Rev. D 56 2566
[16]
Bessis D, Vrscay E R and Handy C R 1987 J. Phys. A: Math. Gen. 20 419
[17]
Ghalenovi Z, Rajabi A A and Hamzavi M 2011 Acta Phys. Pol. B 42 1849
[18]
Castro L B, de Castro A S and Hott M 2007 Int. J. Mod. Phys. E 16 3002
[19]
Castro L B, de Castro A S and Hott M 2007 Europhys. Lett. 77 20009
[20]
Alhaidari A D 2011 Phys. Lett. B 699 309
[21]
Alhaidari A D 2010 Int. J. Mod. Phys. A 25 3703
[22]
Alhaidari A D 2010 Found. Phys. 40 1088
[23]
Zhou S G, Meng J and Ring P 2003 Phys. Rev. Lett. 91 262501
[24]
He X T, Zhou S G, Meng J, Zhao E G and Scheid W 2006 Eur. Phys. J. A 28 265
[25]
Song C Y, Yao J M and Meng J 2009 Chin. Phys. Lett. 26 122102
[26]
Song C Y and Yao J M 2010 Chin. Phys. C 34 1425
[27]
Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Berlin: Birkhausr)
[28]
Hamzavi M, Rajabi A A and Hassanabadi H 2011 Int. J. Mod. Phys. A 26 1363
[29]
Hamzavi M, Hassanabadi H and Rajabi A A 2010 Mod. Phys. Lett. A 25 2447
[30]
Hamzavi M, Hassanabadi H and Rajabi A A 2010 Int. J. Mod. Phys. E 19 2189
[31]
Aydoğdu O and Sever R 2009 Phys. Scr. 80 015001
[32]
Ginocchio J N 1999 Phys. Rep. 315 231
[33]
Ginocchio J N 1999 Nucl. Phys. A 654 663
[34]
Meng J, Sugawara-Tanabe K, Yamaji S and Arima A 1999 Phys. Rev. C 59 154
[35]
Meng J, Sugawara-Tanabe K, Yamaji S, Ring P and Arima A 1998 Phys. Rev. C 58 R628
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.