Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 084501    DOI: 10.1088/1674-1056/22/8/084501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of material properties on the competition mechanism of heat transfer of a granular bed in rotary cylinders

Xie Zhi-Yin (谢知音), Feng Jun-Xiao (冯俊小)
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  Mixing and heat transfer processes of the granular materials within rotary cylinders play a key role in industrial processes. The numerical simulation is carried out by using the discrete element method (DEM) to investigate the influences of material properties on the bed mixing and heat transfer process, including heat conductivity, heat capacity, and shear modulus. Moreover, a new Péclet number is derived to determine the dominant mechanism of the heating rate within the particle bed, which is directly related to thermal and mechanical properties. The system exhibits a faster heating rate with the increase of ratio of thermal conductivity and heat capacity, or the decrease of shear modulus when inter-particle conduction dominates the heating rate; conversely, it shows a fast-mixing bed when particle convection governs the heating rate. The simulation results show good agreement with the theoretical predictions.
Keywords:  rotary cylinder      particle mixing      heat conduction      material properties  
Received:  26 September 2012      Revised:  17 December 2012      Accepted manuscript online: 
PACS:  45.70.-n (Granular systems)  
  44.10.+i (Heat conduction)  
  44.30.+v (Heat flow in porous media)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2007AA05Z215) and the Fundamental Research Funds for the Central Universities (Grant No. FRF-AS-10-005B).
Corresponding Authors:  Feng Jun-Xiao     E-mail:  jxfeng@ustb.edu.cn

Cite this article: 

Xie Zhi-Yin (谢知音), Feng Jun-Xiao (冯俊小) Effects of material properties on the competition mechanism of heat transfer of a granular bed in rotary cylinders 2013 Chin. Phys. B 22 084501

[1] Vargas W L and McCarthy J J 2002 Int. J. Heat Mass Transfer 45 4847
[2] Vargas W L and McCarthy J J 2002 Chem. Eng. Sci. 57 3119
[3] Schlünde E U 1982 Heat Transfer, Proc. 7th Int. Heat Transfer Conference, Hemisphere Publishing Corporation l 195
[4] Moleurs Otto 1997 Int. J. Heat Mass Transfer 40 4151
[5] Boateng A A and Barr P V 1996 Int. J. Heat Mass Transfer 39 2131
[6] van Puyvelde D R, Young B R, Wilson M A and Schmidt S J 1999 Powder Tech. 106 183
[7] Liu X Y and Eckehard S 2010 Chem. Eng. Process. 49 147
[8] Kwapinska M, Saage G and Tsotsas E 2006 Powder Tech. 161 69
[9] Liu Y L, Zhang X Q and Zhao Y Z 2009 Acta Phys. Sin. 58 8386 (in Chinese)
[10] Zhao Y Z and Cheng Y 2008 Acta Phys. Sin. 57 322 (in Chinese)
[11] Shi D S, Vargas W L and McCarthy J J 2008 Chem. Eng. Sci. 63 4506
[12] Bodhisattwa C, Fernando J, Muzzio M and Silvina T 2006 Chem. Eng. Sci. 61 6348
[13] Isabel F, Vargas W L and McCarthy J J 2010 Chem. Eng. Sci. 65 1045
[14] Xie Z Y and Feng J X 2013 J. Central South Univ. Tech. (In Press)
[15] Thornton C and Antony S.J 2000 Powder Tech. 109 179
[16] Cundall P A and Strack O D L 1979 Geotechnique 29 47
[17] Alberto D R and Francesco P D M 2004 Chem. Eng. Sci. 59 525
[18] Thornton C, Yin K K and Admas M J 1996 J. Phys. D: Appl. Phys. 29 424
[19] Batchelor G B and O'Brien R W O 1977 Proc. Royal Soc. Lond. 355 313
[20] Vargas W L and McCarthy J J 2001 AIChE J. 47 1052
[21] Antwerpena W V, Toitb C G D and Rousseaua P G 2010 Nucl. Eng. Design 240 1803
[22] Zhang H W, Zhou Q, Xing H L and Muhlhaus H 2011 Powder Tech. 205 172
[23] Ding Y L, Forster R, Seville J P K and Parker D J 2002 Powder Tech. 124 18
[24] Schlünder E U and Mollekopf N 1984 Chem. Eng. Process. 18 93
[25] Dury C M, Ristow G H, Moss J L and Nakagawa M 1998 Phys. Rev. E 57 4491
[26] Yang R Y, Yu A B, McElroy L and Bao J 2008 Powder Tech. 188 170
[1] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[2] Temperature dependence of heat conduction coefficient in nanotube/nanowire networks
Kezhao Xiong(熊科诏), Zonghua Liu(刘宗华). Chin. Phys. B, 2017, 26(9): 098904.
[3] Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer problems
Juan-Mian Lei(雷娟棉) and Xue-Ying Peng(彭雪莹). Chin. Phys. B, 2016, 25(2): 020202.
[4] Numerical solution of the imprecisely defined inverse heat conduction problem
Smita Tapaswini, S. Chakraverty, Diptiranjan Behera. Chin. Phys. B, 2015, 24(5): 050203.
[5] Time fractional dual-phase-lag heat conduction equation
Xu Huan-Ying (续焕英), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2015, 24(3): 034401.
[6] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang (王启防), Dai Bao-Dong (戴保东), Li Zhen-Feng (栗振锋). Chin. Phys. B, 2013, 22(8): 080203.
[7] An improved local radial point interpolation method for transient heat conduction analysis
Wang Feng (王峰), Lin Gao (林皋), Zheng Bao-Jing (郑保敬), Hu Zhi-Qiang (胡志强). Chin. Phys. B, 2013, 22(6): 060206.
[8] Combine complex variable reproducing kernel particle method and finite element method for solving transient heat conduction problems
Chen Li (陈丽), Ma He-Ping (马和平), Cheng Yu-Min (程玉民). Chin. Phys. B, 2013, 22(5): 050202.
[9] A meshless model for transient heat conduction analyses of 3D axisymmetric functionally graded solids
Li Qing-Hua (李庆华), Chen Shen-Shen (陈莘莘), Zeng Ji-Hui (曾骥辉). Chin. Phys. B, 2013, 22(12): 120204.
[10] Fractional Cattaneo heat equation in a semi-infinite medium
Xu Huan-Ying (续焕英), Qi Hai-Tao (齐海涛), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2013, 22(1): 014401.
[11] A possible mechanism for magnetar soft X-ray/$\gamma$-ray emission
Gao Zhi-Fu(高志福), Peng Qiu-He(彭秋和), Wang Na(王娜), and Chou Chih-Kang(邹志刚) . Chin. Phys. B, 2012, 21(5): 057109.
[12] A new complex variable meshless method for transient heat conduction problems
Wang Jian-Fei (王健菲), Cheng Yu-Min (程玉民). Chin. Phys. B, 2012, 21(12): 120206.
[13] Phonon relaxation and heat conduction in one-dimensional Fermi–Pasta–Ulam β lattices by molecular dynamics simulations
Hou Quan-Wen(侯泉文) and Cao Bing-Yang(曹炳阳) . Chin. Phys. B, 2012, 21(1): 014401.
[14] Meshless analysis of three-dimensional steady-state heat conduction problems
Cheng Rong-Jun(程荣军) and Ge Hong-Xia(葛红霞). Chin. Phys. B, 2010, 19(9): 090201.
[15] Anomalous energy diffusion and heat conduction in one-dimensional system
Li Hai-Bin(李海彬) and Li Zhen(李珍). Chin. Phys. B, 2010, 19(5): 054401.
No Suggested Reading articles found!