Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050202    DOI: 10.1088/1674-1056/22/5/050202
GENERAL Prev   Next  

Combine complex variable reproducing kernel particle method and finite element method for solving transient heat conduction problems

Chen Li (陈丽)a b, Ma He-Ping (马和平)a, Cheng Yu-Min (程玉民)c
a Department of Mathematics, Shanghai University, Shanghai 200072, China;
b Department of Engineering Mechanics, Chang'an University, Xi'an 710064, China;
c Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
Abstract  In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.
Keywords:  complex variable reproducing kernel particle method      finite element method      combined method      transient heat conduction  
Received:  06 November 2012      Revised:  19 December 2012      Accepted manuscript online: 
PACS:  02.30.Fn (Several complex variables and analytic spaces)  
  02.30.Jr (Partial differential equations)  
  02.60.-x (Numerical approximation and analysis)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11171208) and the Special Fund for Basic Scientific Research of Central Colleges of Chang'an University, China (Grant No. CHD2011JC080).
Corresponding Authors:  Cheng Yu-Min     E-mail:  ymcheng@shu.edu.cn

Cite this article: 

Chen Li (陈丽), Ma He-Ping (马和平), Cheng Yu-Min (程玉民) Combine complex variable reproducing kernel particle method and finite element method for solving transient heat conduction problems 2013 Chin. Phys. B 22 050202

[1] Lewis R W, Morgan K, Thomas H R and Seetharamu K N 1996 The Finite Element Method in Heat Transfer Analysis (Chichester: Wiley)
[2] Bathe K J and Khoshgoftar M R 1979 Nucl. Eng. Des. 51 389
[3] Belytschko T, Krongauz Y, Organ D, Fleming M and Krysl P 1996 Comput. Meth. Appl. Mech. Eng. 139 3
[4] Belytschko T, Lu Y Y and Gu L 1994 Int. J. Numer. Meth. Eng. 37 229
[5] Cheng R J and Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese)
[6] Cheng R J and Cheng Y M 2011 Chin. Phys. B 20 070206
[7] Liu W K, Jun S and Zhang Y F 1995 Int. J. Numer. Meth. Fluids 20 1081
[8] Cheng Y M and Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese)
[9] Cheng Y M and Li J H 2006 Sci. China Ser. G Phys. Mech. Astron. 49 46
[10] Liew K M, Feng C, Cheng Y M and Kitipornchai S 2007 Int. J. Numer. Meth. Eng. 70 46
[11] Peng M J, Li D M and Cheng Y M 2011 Engineering Structures 33 127
[12] Liew K M and Cheng Y M 2009 Comput. Meth. Appl. Mech. Eng. 198 3925
[13] Bai F N, Li D M, Wang J F and Cheng Y M 2012 Chin. Phys. B 21 020204
[14] Li D M, Bai F N, Cheng Y M and Liew K M 2012 Comput. Meth. Appl. Mech. Eng. 233-236 1
[15] Ren H P and Cheng Y M 2012 International Journal of Computational Materials Science and Engineering 1 1250011
[16] Cheng Y M, Wang J F and Bai F N 2012 Chin. Phys. B 21 090203
[17] Cheng Y M, Li R X and Peng M J 2012 Chin. Phys. B 21 090205
[18] Zhu T, Zhang J D and Atluri S N 1999 Eng. Anal. Bound. Elem. 23 375
[19] Sun Y Z, Zhang Z, Kitipornchai S and Liew K M 2006 International Journal of Engineering Science 44 37
[20] Kothnur V S, Mukherjee S and Mukherjee Y X 1999 Journal of Solids and Structures 36 1129
[21] Liew K M, Cheng Y M and Kitipornchai S 2006 Int. J. Numer. Meth. Eng. 65 1310
[22] Kitipornchai S, Liew K M and Cheng Y M 2005 Comput. Mech. 36 13
[23] Cheng Y M and Peng M J 2005 Sci. China Ser. G Phys. Mech. Astron. 48 641
[24] Liew K M, Cheng Y M and Kitipornchai S 2005 Int. J. Numer. Meth. Eng. 64 1610
[25] Liew K M, Cheng Y M and Kitipornchai S 2007 Int. J. Solids Struct. 44 4220
[26] Qin Y X and Cheng Y M 2006 Acta Phys. Sin. 55 3215 (in Chinese)
[27] Dai B D and Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese)
[28] Peng M J and Cheng Y M 2009 Eng. Anal. Bound. Elem. 33 77
[29] Cheng Y M, Liew K M and Kitipornchai S 2009 Int. J. Numer. Meth. Eng. 78 1258
[30] Ren H P and Zhang W 2009 Chin. Phys. B 18 4065
[31] Liu W K, Chen Y, Jun S, Chen J S and Belytschko T 1996 Archives of Computer Methods in Engineering State of the Art Review 3 3
[32] Liu W K, Jun S, Li S, Adee J and Belytschko T 1995 Int. J. Numer. Meth. Eng. 38 1655
[33] Liew K M, Ng T Y, Zhao X and Reddy J N 2002 Comput. Meth. Appl. Mech. Eng. 191 4141
[34] Chen J S, Chen C, Wu C T and Liu W K 1996 Comput. Meth. Appl. Mech. Eng. 139 195
[35] Liu W K and Jun S 1998 Int. J. Numer. Meth. Eng. 41 1339
[36] Liu W K, Jun S, Thomas S D, Chen Y and Hao W 1997 Int. J. Numer. Meth. Fluids 24 1391
[37] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese)
[38] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese)
[39] Chen L and Cheng Y M 2010 Chin. Phys. B 19 090204
[40] Chen L and Cheng Y M 2010 China Ser. G Phys. Mech. Astron. 53 954
[41] Belytschko T and Organ D 1995 Comput. Mech. 17 186
[42] Dolbow J and Belytschko T 1999 Int. J. Numer. Meth. Eng. 46 925
[1] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[4] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[5] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[6] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[7] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[8] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[9] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[10] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[11] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[12] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[13] Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film
Qi-lin Xiong(熊启林), Xin Tian(田昕). Chin. Phys. B, 2017, 26(9): 096501.
[14] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[15] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
No Suggested Reading articles found!