Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120204    DOI: 10.1088/1674-1056/22/12/120204
GENERAL Prev   Next  

A meshless model for transient heat conduction analyses of 3D axisymmetric functionally graded solids

Li Qing-Hua (李庆华), Chen Shen-Shen (陈莘莘), Zeng Ji-Hui (曾骥辉)
College of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China
Abstract  A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach.
Keywords:  meshless method      transient heat conduction problem      axisymmetric      functionally graded materials      natural neighbor interpolation  
Received:  02 August 2013      Revised:  21 August 2013      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  44.10.+i (Heat conduction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11002054) and the Foundation of Hunan Educational Committee (Grant No. 12C0059).
Corresponding Authors:  Chen Shen-Shen     E-mail:  chenshenshen@tsinghua.org.cn

Cite this article: 

Li Qing-Hua (李庆华), Chen Shen-Shen (陈莘莘), Zeng Ji-Hui (曾骥辉) A meshless model for transient heat conduction analyses of 3D axisymmetric functionally graded solids 2013 Chin. Phys. B 22 120204

[1] Sladek J, Sladek V, Krivacek J and Zhang C 2003 Comput. Mech. 32 169
[2] Sladek J, Sladek V, Hellmich Ch and Eberhardsteiner J 2007 Comput. Mech. 39 323
[3] Wang X C 2003 Finite Element Method (Beijing: Tsinghua University Press) (in Chinese)
[4] Kim J H and Paulino G H 2002 J. Appl. Mech. 69 502
[5] Wang B L, Mai Y W and Zhang X H 2004 Acta Materialia 52 4961
[6] Cen S, Fu X R and Zhou M J 2011 Comput. Methods Appl. Mech. Eng. 200 2321
[7] Gao X W and Davies T G 2000 Int. J. Solids Struct. 37 4987
[8] Sutradhar A, Paulino G H and Gray L J 2002 Eng. Anal. Bound. Elem. 26 119
[9] Li X L, Zhu J L and Zhang S G 2009 Eng. Anal. Bound. Elem. 33 1273
[10] Li X L 2011 Int. J. Numer. Meth. Eng. 88 442
[11] Cheng Y M and Peng M J 2005 Sci. China Ser. G: Phys. Mech. Astron. 48 641
[12] Cheng Y M and Li J H 2006 Sci. China Ser. G: Phys. Mech. Astron. 49 46
[13] Feng Z, Wang X D and Ouyang J 2013 Chin. Phys. B 22 074704
[14] Li X L and Li S L 2013 Chin. Phys. B 22 080204
[15] Singh I V and Tanaka M 2006 Comput. Mech. 38 521
[16] Singh A, Singh I V and Prakash R 2006 Int. J. Heat Mass Transfer 33 231
[17] Singh A, Singh I V and Prakash R 2006 Numer. Heat Transfer Part A 50 125
[18] Atluri S N and Zhu T 1998 Comput. Mech. 22 117
[19] Sladek J, Sladek V and Hon Y C 2006 Eng. Anal. Bound. Elem. 30 650
[20] Sladek J, Sladek V, Tan C L and Atluri S N 2008 Comput. Model Eng. Sci. 32 161
[21] Wu X H and Tao W Q 2008 Int. J. Heat Mass Transfer 51 3103
[22] Wang Q F, Dai B D and Li Z F 2013 Chin. Phys. B 22 080203
[23] Chen L and Liew K M 2011 Comput. Mech. 47 455
[24] Li Q H, Chen S S and Kou G X 2011 J. Comput. Phys. 230 2736
[25] Dai B D, Zheng B J, Liang Q X and Wang L H 2013 Appl. Math. Comput. 219 10044
[26] Gao X W 2006 Int. J. Numer. Method Eng. 66 1411
[27] Cheng R J and Liew K M 2009 Comput. Mech. 45 1
[28] Peng M J and Cheng Y M 2009 Eng. Anal. Bound. Elem. 33 77
[29] Skouras E D, Bourantas G C, Loukopoulos V C and Nikiforidis G C 2011 Eng. Anal. Bound. Elem. 35 452
[30] Cai Y C and Zhu H H 2004 Eng. Anal. Bound. Elem. 28 607
[31] Sukumar N, Moran B and Belytschko T 1998 Int. J. Numer. Method Eng. 43 839
[32] Green P J and Sibson R R 1978 Comput. J. 21 168
[33] Carslaw H S and Jaeger J C 1959 Conduction of Heat in Solids (Oxford: Clarendon Press)
[1] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[2] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[3] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[4] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[5] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[6] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi (马永其), Zhou Yan-Kai (周延凯). Chin. Phys. B, 2015, 24(3): 030204.
[7] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min (程玉民), Liu Chao (刘超), Bai Fu-Nong (白福浓), Peng Miao-Juan (彭妙娟). Chin. Phys. B, 2015, 24(10): 100202.
[8] Hybrid natural element method for viscoelasticity problems
Zhou Yan-Kai (周延凯), Ma Yong-Qi (马永其), Dong Yi (董轶), Feng Wei (冯伟). Chin. Phys. B, 2015, 24(1): 010204.
[9] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong (王延冲), Li Xiao-Lin (李小林). Chin. Phys. B, 2014, 23(9): 090202.
[10] Three-dimensional magnetohydrodynamics axisymmetric stagnation flow and heat transfer due to an axisymmetric shrinking/stretching sheet with viscous dissipation and heat source/sink
Dinesh Rajotia, R. N. Jat. Chin. Phys. B, 2014, 23(7): 074701.
[11] A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation
Ge Hong-Xia (葛红霞), Cheng Rong-Jun (程荣军). Chin. Phys. B, 2014, 23(4): 040203.
[12] Analysis of variable coefficient advection–diffusion problems via complex variable reproducing kernel particle method
Weng Yun-Jie (翁云杰), Cheng Yu-Min (程玉民). Chin. Phys. B, 2013, 22(9): 090204.
[13] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang (王启防), Dai Bao-Dong (戴保东), Li Zhen-Feng (栗振锋). Chin. Phys. B, 2013, 22(8): 080203.
[14] A meshless Galerkin method with moving least square approximations for infinite elastic solids
Li Xiao-Lin (李小林), Li Shu-Ling (李淑玲). Chin. Phys. B, 2013, 22(8): 080204.
[15] Analysis of the generalized Camassa and Holm equation with the improved element-free Galerkin method
Cheng Rong-Jun, Wei Qi. Chin. Phys. B, 2013, 22(6): 060209.
No Suggested Reading articles found!