Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 084701    DOI: 10.1088/1674-1056/22/8/084701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Instantaneous frequency and wave mode identification in a magnetosheath using few spatial points

Nathaniel E Ua, Beloff Nb, George N Ja
a Department of Physics, Akwa Ibom State University, Nigeria;
b University of Sussex, Brighton, UK
Abstract  Observational data such as those obtained from the magnetosheath in the downstream of Earth's bow shock have waveforms that differ from those of sinusoidal signals. In practice, they are not even aggregates of sinusoidal signals. Therefore, the frequency decomposition for the data requires technique that will account for the time-varying features of the data that will lead to deduction of physical meaning of the observations. The combination of empirical mode decomposition (EMD) and Hilbert transform has been used for extracting the various contributing oscillatory modes (EMDs) and the instantaneous frequency determination (Hilbert transform) of every physically meaningful mode called intrinsic mode function (IMF). The resulting instantaneous frequencies are used to determine instantaneous wave vectors. The combination of the instantaneous frequencies and wave vectors is useful in the identification of wave modes based on the characteristics of the waves. The results show that EMD-Hilbert can be more reliable than simple Hilbert transform alone.
Keywords:  EMD-Hilbert transform      instantaneous frequency and wave vector  
Received:  18 October 2012      Revised:  21 December 2013      Accepted manuscript online: 
PACS:  47.40.-x (Compressible flows; shock waves)  
  47.35.-i (Hydrodynamic waves)  
  47.35.Bb (Gravity waves)  
  47.35.Lf (Wave-structure interactions)  
Corresponding Authors:  George N J     E-mail:  nyaknojimmyg@yahoo.com

Cite this article: 

Nathaniel E U, Beloff N, George N J Instantaneous frequency and wave mode identification in a magnetosheath using few spatial points 2013 Chin. Phys. B 22 084701

[1] Hubert D 1994 Adv. Space Res. 14 55
[2] Schafer S, Glassmeier K H, Narita, Fornacon K H, Dandouras I and Franz M 2005 Ann. Geophys. 23 3339
[3] Narita Y and Glassmeier K H 2006 Ann. Geophys. 24 2441
[4] Shevyrev N N 2005 Cosmic Res. 43 29
[5] Balikhin M A, Pokhotelov O A, Walker S N and Andre M 2003 Plan. Space Sci. 51 693
[6] Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N, Tung C C and Liu H H 1998 Proc. R. Soc. Lond. A 454 903
[7] Wu Z and Huang N E 2003 Proc. R. Soc. Lond. A 460 1597
[8] Rilling G and Flandrin P 2006 On the Influence of Sampling on the Empirical Mode Decomposition (France: IEEE) p. 4
[9] Huang N E and Shen S S 2005 Hilbert-Huang Transform and Its Applications (Singapore: World Scientific) p. 311
[10] Flandrin P, Rilling G and Goncalves P 2004 IEEE Signal Proc. Lett. 11 112
[11] http://www.ens-lyon.fr/flandrin/software.html
[12] Li H L, Deng X Y and Dai H L 2007 Mech. Sys. Signal Proc. 21 298
[13] Carozzi T D, Buckl A M and Gough M P 2004 Ann. Geophys. 22 2633
[14] Beall J M, Kim Y C and Powers E J 1982 J. Appl. Phys. 53 3933
[15] Paschmann G and Daly P W 2000 Analysis Methods for Multi-spacecraft Data, July, 2000, Nether Lands, p. 349
[16] Bedrosian E 1963 Proc. IEEE 51 868
[17] Gabor D 1946 J. IEEE 93 429
[18] Reme H, Aoustin C, Bosqued J M, Dandouras I, Lavraud B, Sauvaud J A, Barthe A, Bouyssou J, Camus Th, Coeur-Joly O, Cros A, Cuvilo J, Ducay F, Garbarowitz Y, Medale J L, Penou A J E, Perrier H, Romefort D, Rouzaud J, Vallat C, Alcayde D, Jacquey C, Mazelle, DUston C, Mobius E, Kistler L M, Crocker K, Granoff M, Mouikis C, Popecki M, Vosbury M, Klecker B, Hovestadt D, Kucharek H, Kuenneth E, Paschmann G G, Scholer M, Sckopke N, Seidenschwang E, Carlson C W, Curtis D W, Ingraham C, Lin R P, McFadden J P, Parks G K, Phan T, Formisano V, Amata E, Bavassano-Cattaneo M B, Baldetti P, Bruno R, Chionchio G, di Lellis A, Marcucci M F, Pallocchia G, Korth A, Daly P W, Graeve B, Rosenbauer H, Vasyliunas V, McCarthy M, Wilber M, Eliasson L, Lundin R, Olsen S, Shelley E G, Fuselier S, Ghielmetti A G, Lennartsson W, Escoubet C P, Balsiger H, Friedel R, Cao J B, Kovrazhkin R A, Papamastorakis I, Pellat R, Scudder J and Sonnerup B 2001 Ann. Geophys. 19 1303
[19] Constantinescu O D, Glassmeier K H, Decreau P M E, Franz M and Fornacon K M 2007 Ann. Geophys. 25 2217
[20] Denton R E 2000 Int. J. Geomagn. 2 1
[21] Lu Q M and Wang S 2005 Chin. J. Astron. Astro-Phys. 5 192
[22] Gray S P 1992 J. Geophys. Res. 97 8519
[1] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[2] Erratum to “Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel”
Khaled S. Mekheimer, Soliman R. Komy, and Sara I. Abdelsalam. Chin. Phys. B, 2021, 30(9): 099901.
[3] Aerodynamic actuation characteristics of radio-frequency discharge plasma and control of supersonic flow
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Hong-Yu Wang(王宏宇), Shan-Guang Guo(郭善广), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2019, 28(2): 024701.
[4] Effect of the Al/O ratio on the Al reaction of aluminized RDX-based explosives
Qian Zhao(赵倩), Jian-Xin Nie(聂建新), Wei Zhang(张伟), Qiu-Shi Wang(王秋实), Qing-Jie Jiao(焦清介). Chin. Phys. B, 2017, 26(5): 054502.
[5] Achieving acoustic cloak by using compressible background flow
Ruo-Yang Zhang(张若洋), Qing Zhao(赵清), Mo-Lin Ge(葛墨林). Chin. Phys. B, 2016, 25(8): 084702.
[6] A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows
Li Kai (李凯), Zhong Cheng-Wen (钟诚文). Chin. Phys. B, 2015, 24(5): 050501.
[7] Critical deflagration waves leading to detonation onset under different boundary conditions
Lin Wei (林伟), Zhou Jin (周进), Fan Xiao-Hua (范孝华), Lin Zhi-Yong (林志勇). Chin. Phys. B, 2015, 24(1): 014701.
[8] Particle path tracking method in two-and three-dimensional continuously rotating detonation engines
Zhou Rui (周蕊), Wu Dan (武丹), Liu Yan (刘岩), Wang Jian-Ping (王健平). Chin. Phys. B, 2014, 23(12): 124704.
[9] Existence of a Hartmann layer in the peristalsis of Sisko fluid
Saleem Asghar, Tayyaba Minhas, Aamir Ali. Chin. Phys. B, 2014, 23(5): 054702.
[10] Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel
Khaled S. Mekheimer, Soliman R. Komy, Sara I. Abdelsalam. Chin. Phys. B, 2013, 22(12): 124702.
[11] Instantaneous and time-averaged flow structures around a blunt double-cone with or without supersonic film cooling visualized via nano-tracer planar laser scattering
Zhu Yang-Zhu (朱杨柱), Yi Shi-He (易仕和), He Lin (何霖), Tian Li-Feng (田立丰), Zhou Yong-Wei (周勇为). Chin. Phys. B, 2013, 22(1): 014702.
[12] Experimental investigations of detonation initiation by hot jets in supersonic premixed flows
Han Xu (韩旭), Zhou Jin (周进), Lin Zhi-Yong (林志勇). Chin. Phys. B, 2012, 21(12): 124702.
[13] An improved two-dimensional unstructured CE/SE scheme for capturing shock waves
Fu Zheng(付峥) and Liu Kai-Xin(刘凯欣) . Chin. Phys. B, 2012, 21(4): 040202.
[14] Viscosity of aluminum under shock-loading conditions
Ma Xiao-Juan (马小娟), Liu Fu-Sheng (刘福生), Zhang Ming-Jian (张明建), Sun Yan-Yun (孙燕云). Chin. Phys. B, 2011, 20(6): 068301.
[15] Variational iteration method for solving compressible Euler equations
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Xu Yun (徐云), Zhu Jiang (朱江). Chin. Phys. B, 2010, 19(7): 070203.
No Suggested Reading articles found!