Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 014401    DOI: 10.1088/1674-1056/21/1/014401
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Phonon relaxation and heat conduction in one-dimensional Fermi–Pasta–Ulam β lattices by molecular dynamics simulations

Hou Quan-Wen(侯泉文)a)b) and Cao Bing-Yang(曹炳阳)a)
a Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; b Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710072, China
Abstract  The phonon relaxation and heat conduction in one-dimensional Fermi-Pasta-Ulam (FPU) β lattices are studied by using molecular dynamics simulations. The phonon relaxation rate, which dominates the length dependence of the FPU β lattice, is first calculated from the energy autocorrelation function for different modes at various temperatures through equilibrium molecular dynamics simulations. We find that the relaxation rate as a function of wave number k is proportional to k1.688, which leads to a N0.41 divergence of the thermal conductivity in the framework of Green-Kubo relation. This is also in good agreement with the data obtained by non-equilibrium molecular dynamics simulations which estimate the length dependence exponent of the thermal conductivity as 0.415. Our results confirm the N2/5 divergence in one-dimensional FPU β lattices. The effects of the heat flux on the thermal conductivity are also studied by imposing different temperature differences on the two ends of the lattices. We find that the thermal conductivity is insensitive to the heat flux under our simulation conditions. It implies that the linear response theory is applicable towards the heat conduction in one-dimensional FPU β lattices.
Keywords:  thermal conductivity      phonon relaxation      low-dimensional heat conduction      Fermi-Pasta-Ulam (FPU) β lattice  
Received:  12 June 2011      Revised:  13 September 2011      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  66.25.+g (Thermal conduction in nonmetallic liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50976052, 51136001, and 50730006), the Program for New Century Excellent Talents in University, China, the Tsinghua University Initiative Scientific Research Program, China,

Cite this article: 

Hou Quan-Wen(侯泉文) and Cao Bing-Yang(曹炳阳) Phonon relaxation and heat conduction in one-dimensional Fermi–Pasta–Ulam β lattices by molecular dynamics simulations 2012 Chin. Phys. B 21 014401

[1] Popov V N 2004 Mater. Sci. Eng. R 43 61
[2] Hernandez-Velez S 2006 Thin Solid Films 495 51
[3] Liang X G 2007 Chin. Sci. Bull. 52 2457
[4] Chen G 2001 Int. J. Term. Sci. 40 693
[5] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R and Phillpot S R 2003 J. Appl. Phys. 93 793
[6] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[7] Fujii M, Zhang X, Xie H Q, Ago H, Takahashi K and Ikuta T 2005 it Phys. Rev. Lett. 95 065502
[8] Wang Z L, Tang D W, Li X B, Zheng X H, Zhang W G, Zheng L X, Zhu Y T, Jin A Z, Yang H F and Gu C Z 2007 Appl. Phys. Lett. 91 123119
[9] Mingo N and Broido D A 2005 Nano Lett. 5 1221
[10] Mingo N and Broido D A 2005 Phys. Rev. Lett. 95 096105
[11] Kahaly M U and Waghmare U V 2007 Appl. Phys. Lett. 91 023112
[12] Berber S, Kwon Y K and Tomanek D 2000 Phys. Rev. Lett. 84 4613
[13] Bao W X and Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese)
[14] Maruyama S 2002 Physica B 323 193
[15] Hou Q W, Cao B Y and Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese)
[16] Chang C W, Okawa D, Garcia H, Majumdar A and Zettl A 2008 Phys. Rev. Lett. 101 075903
[17] Henry A and Chen G 2008 Phys. Rev. Lett. 101 235502
[18] Shen S, Henry A, Tong J, Zheng R T and Chen G 2010 Nature Nanotech. 5 251
[19] Cao B Y, Li Y W, Kong J, Chen H, Xu Y, Yung K L and Cai A 2011 it Polymer 52 1711
[20] Leitner D M 2008 Annu. Rev. Phys. Chem. 59 233
[21] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1
[22] Dhar A 2008 Adv. Phys. 57 457
[23] Li H B and Li Z 2010 Chin. Phys. B 19 054401
[24] Li H B 2003 Phys. Lett. A 317 406
[25] Narayan O and Ramaswamy S 2002 Phys. Rev. Lett. 89 200601
[26] Mai T and Narayan O 2006 Phys. Rev. E 73 061202
[27] Hurtado P I 2006 Phys. Rev. Lett. 96 010601
[28] Lepri S 1998 Phys. Rev. E 58 7165
[29] Pereverzev A 2003 Phys. Rev. E 68 056124
[30] Lepri S, Livi R and Politi A 2003 Phys. Rev. E 68 067102
[31] Li B W, Wang J and Wang L 2005 Chaos 15 015121
[32] Li N B, Li B W and Flach S 2010 Phys. Rev. Lett. 105 054102
[33] Aoki K and Kusnezov D 2001 Phys. Rev. Lett. 86 4029
[34] Li N B and Li B W 2007 Europhys. Lett. 78 34001
[35] Cao B Y and Guo Z Y 2007 J. Appl. Phys. 102 053503
[36] Guo Z Y and Cao B Y 2008 Acta Phys. Sin. 57 4273 (in Chinese)
[37] Tzou D Y 2011 Int. J. Heat Mass Transfer 54 475
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[8] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[9] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[10] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[11] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[12] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[13] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[14] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[15] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
No Suggested Reading articles found!