Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 054401    DOI: 10.1088/1674-1056/19/5/054401
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Anomalous energy diffusion and heat conduction in one-dimensional system

Li Hai-Bin(李海彬) and Li Zhen(李珍)
Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
Abstract  We propose a new concept, the centre of energy, to study energy diffusion and heat conduction in one-dimensional hard-point model. For diatom model, we find an anomalous energy diffusion as $\langle x^2 \rangle\sim t^\beta$ with $\beta=1.33$, which is independent of initial condition and mass rate. The present model can be viewed as the model composed by independent quasi-particles, the centre of energy. In this way, heat current can be calculated. Based on theory of dynamic billiard, the divergent exponent of heat conductivity is estimated to be $\alpha=0.33$, which is confirmed by a simple numerical calculation.
Keywords:  energy diffusion      heat conduction      one-dimensional hard-point model  
Received:  30 July 2009      Revised:  26 September 2009      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  05.60.-k (Transport processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10605020), and the Natural Science Foundation of Zhejiang Province of China (Grant No.~Y605376.)

Cite this article: 

Li Hai-Bin(李海彬) and Li Zhen(李珍) Anomalous energy diffusion and heat conduction in one-dimensional system 2010 Chin. Phys. B 19 054401

[1] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1
[2] Rieder Z, Lebowtiz J L and Lieb E 1967 J. Math. Phys. 8 1073
[3] Li H B, Wang Y H and Zhao H 2002 Phys. Rev. Lett. 89 079401
[4] Grassberger P, Nadler W and Yang L 2002 Phys. Rev. Lett. 89 180601
[5] Casati G and Prosen T 2003 Phys. Rev. E 67 015203(R)
[6] Savin A V, Tsironis G P and Zolotaryuk A V 2002 Phys. Rev. Lett. 88 154301
[7] Dhar A 2001 Phys. Rev. Lett. 86 3554
[8] Pereverzev A 2003 Phys. Rev. E 68 056124
[9] Narayan O and Ramaswamy S 2002 Phys. Rev. Lett. 89 200601
[10] Delfini L, Lepri S, Livi R and Politi A 2006 Phys. Rev. E 73 060201
[11] Delfini L, Denisov S, Lepri S, Livi R, Mohanty P and Politi A 2007 Eur. Phys. J. Special Topics 146 21
[12] Santhosh G and Kumar D 2008 Phys. Rev. E 77 011113
[13] Wang J S and Li B W 2004 Phys. Rev. Lett. 92 074302
[14] Wang J S and Li B W 2004 Phys. Rev. E 70 021204
[15] Mai T, Dhar A and Narayan O 2007 Phys. Rev. Lett. 98 184301
[16] Delfini L, Lepri S, Livi R and Politi A 2008 Phys. Rev. Lett. 100 199401
[17] Hu B B, Li B W and Zhao H 1998 Phys. Rev. E 57 2992
[18] Bonetto F, Lebowitz J L and Lukkarinen 2004 J. Stat. Phys. 116 783
[19] Li X X and Tang Y 2006 Acta Phys. Sin. 55 6556
[20] Alonso D, Artuso R, Casati G and Guarneri I 1999 Phys. Rev. Lett. 82 1859
[21] Alonso D, Ruiz A and de Vega I 2002 Phys. Rev. E 66 066131
[22] Li B W, Wang L and Hu B B 2002 Phys. Rev. Lett. 88 223901
[23] Li B W, Casati G and Wang J 2003 Phys. Rev. E 67 021204
[24] Denisov S, Klafter J and Urbakh M 2003 Phys. Rev. Lett. 91 194301
[25] Cipriani P, Denisov S and Politi A 2005 Phys. Rev. Lett. 94 244301
[26] Delfini L, Denisov S, Lepri S, Livi R, Mohanty P and Politi A 2007 Eur. Phys. J. Special Topics 146 21
[27] Zhao H 2006 Phys. Rev. Lett. 96 140602
[1] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[2] Temperature dependence of heat conduction coefficient in nanotube/nanowire networks
Kezhao Xiong(熊科诏), Zonghua Liu(刘宗华). Chin. Phys. B, 2017, 26(9): 098904.
[3] Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer problems
Juan-Mian Lei(雷娟棉) and Xue-Ying Peng(彭雪莹). Chin. Phys. B, 2016, 25(2): 020202.
[4] Numerical solution of the imprecisely defined inverse heat conduction problem
Smita Tapaswini, S. Chakraverty, Diptiranjan Behera. Chin. Phys. B, 2015, 24(5): 050203.
[5] Time fractional dual-phase-lag heat conduction equation
Xu Huan-Ying (续焕英), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2015, 24(3): 034401.
[6] Effects of material properties on the competition mechanism of heat transfer of a granular bed in rotary cylinders
Xie Zhi-Yin (谢知音), Feng Jun-Xiao (冯俊小). Chin. Phys. B, 2013, 22(8): 084501.
[7] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang (王启防), Dai Bao-Dong (戴保东), Li Zhen-Feng (栗振锋). Chin. Phys. B, 2013, 22(8): 080203.
[8] An improved local radial point interpolation method for transient heat conduction analysis
Wang Feng (王峰), Lin Gao (林皋), Zheng Bao-Jing (郑保敬), Hu Zhi-Qiang (胡志强). Chin. Phys. B, 2013, 22(6): 060206.
[9] Combine complex variable reproducing kernel particle method and finite element method for solving transient heat conduction problems
Chen Li (陈丽), Ma He-Ping (马和平), Cheng Yu-Min (程玉民). Chin. Phys. B, 2013, 22(5): 050202.
[10] A meshless model for transient heat conduction analyses of 3D axisymmetric functionally graded solids
Li Qing-Hua (李庆华), Chen Shen-Shen (陈莘莘), Zeng Ji-Hui (曾骥辉). Chin. Phys. B, 2013, 22(12): 120204.
[11] Fractional Cattaneo heat equation in a semi-infinite medium
Xu Huan-Ying (续焕英), Qi Hai-Tao (齐海涛), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2013, 22(1): 014401.
[12] A possible mechanism for magnetar soft X-ray/$\gamma$-ray emission
Gao Zhi-Fu(高志福), Peng Qiu-He(彭秋和), Wang Na(王娜), and Chou Chih-Kang(邹志刚) . Chin. Phys. B, 2012, 21(5): 057109.
[13] A new complex variable meshless method for transient heat conduction problems
Wang Jian-Fei (王健菲), Cheng Yu-Min (程玉民). Chin. Phys. B, 2012, 21(12): 120206.
[14] Phonon relaxation and heat conduction in one-dimensional Fermi–Pasta–Ulam β lattices by molecular dynamics simulations
Hou Quan-Wen(侯泉文) and Cao Bing-Yang(曹炳阳) . Chin. Phys. B, 2012, 21(1): 014401.
[15] Meshless analysis of three-dimensional steady-state heat conduction problems
Cheng Rong-Jun(程荣军) and Ge Hong-Xia(葛红霞). Chin. Phys. B, 2010, 19(9): 090201.
No Suggested Reading articles found!