Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057109    DOI: 10.1088/1674-1056/21/5/057109
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A possible mechanism for magnetar soft X-ray/$\gamma$-ray emission

Gao Zhi-Fu(高志福)a)b)c), Peng Qiu-He(彭秋和) d)†, Wang Na(王娜)a)b), and Chou Chih-Kang(邹志刚)e)
a. Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China;
b. Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210008, China;
c. Graduate University of the Chinese Academy of Sciences, Beijing 100080, China;
d. Department of Astronomy, Nanjing University, Nanjing 210093, China;
e. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
Abstract  Once the energies of electrons near the Fermi surface obviously exceed the threshold energy of the inverse β decay, electron capture (EC) dominates inside the magnetar. Since the maximal binding energy of the 3P2 neutron Cooper pair is only about 0.048 MeV, the outgoing high-energy neutrons (Ek(n)>60 MeV) created by the EC can easily destroy the 3P2 neutron Cooper pairs through the interaction of nuclear force. In the anisotropic neutron superfluid, each 3P2 neutron Cooper pair has magnetic energy 2μnB in the applied magnetic field B, where μn=0.966× 10-23 erg·G-1 is the absolute value of the neutron abnormal magnetic moment. While being destroyed by the high-energy EC neutrons, the magnetic moments of the 3P2 Cooper pairs are no longer arranged in the paramagnetic direction, and the magnetic energy is released. This released energy can be transformed into thermal energy. Only a small fraction of the generated thermal energy is transported from the interior to the surface by conduction, and then it is radiated in the form of thermal photons from the surface. After highly efficient modulation within the star's magnetosphere, the thermal surface emission is shaped into a spectrum of soft X-rays/$\gamma$-rays with the observed characteristics of magnetars. By introducing related parameters, we calculate the theoretical luminosities of magnetars. The calculation results agree well with the observed parameters of magnetars.
Keywords:  Landau levels      Fermi surface      thermal radiation      heat conduction  
Received:  24 September 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  71.70.Di (Landau levels)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10773005), the National Basic Research Program of China (Grant No. 2009CB824800), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-T09), and the Key Directional Project of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos. 10173020, 10673021, 10778631 and 10903019).

Cite this article: 

Gao Zhi-Fu(高志福), Peng Qiu-He(彭秋和), Wang Na(王娜), and Chou Chih-Kang(邹志刚) A possible mechanism for magnetar soft X-ray/$\gamma$-ray emission 2012 Chin. Phys. B 21 057109

[1] Duncan R C and Thompson C 1992 Astrophys. J. 392 9
[2] Thompson C and Duncan R C 1993 Astrophys. J. 543 340
[3] Thompson C and Duncan R C 1995 Mon. Not. R. Astron. Soc. 275 255
[4] Gao Z F, Wang N, Yuan J P, Jiang L, Song D L and Qiao E L 2011 Astrophys. Space Sci. 333 427
[5] Hurley K, Boggs S E, Smith D M, Duncan R C, Lin R, Zoglauer A, Krucker S, Hurford G, Hudson H, Wigger C, Hajdas W, Thompson C, Mitrofanov I, Sanin A, Boynton W, Fellows C, von Kienlin A, Lichti G, Rau A and Cline T 2005 Nature 434 1098
[6] Peng Q H and Tong H 2007 Mon. Not. R. Astron. Soc. 378 159
[7] Peng Q H and Tong H 2009 Proceedings of the 10th Symposium on Nuclei in the Cosmos 27 July 2008 Mackinac Island, USA, p. 189
[8] Mereghetti S, De Luca A, Caraveo P A, Becker W, Mignani R and Bignami G F 2002 Astrophys. J. 581 1280
[9] Halpern J P, Gotthelf E V, Beckek R H, Helfand D J and White R L 2005 Astrophys. J. Lett. 632 29
[10] Mereghetti S 2008 arXiv:0804.0250v1 [astro-ph]
[11] Mereghetti S, Tiengo A, Esposito P, Götz D, Stella L, Israel G L, Rea N, Feroci M, Turolla R and Zane S 2005 Astrophys. J. 628 938
[12] Tong H, Xu R X, Peng Q H and Song L M 2010 Research Astron. Astrophys. 10 553
[13] Thompson C, Lyutikov M and Kulkarni S R 2002 Astrophys. J. 574 332
[14] Heyl J S and Hernquist L 1997 Astrophys. J. 489 67
[15] Rheinhardt M and Geppert U 2003 Phys. Rev. Lett. 88 10
[16] Woods P M and Thompson C 2004 arXiv:astro-ph/0406133
[17] Pons J A, Link B, Miralles J A and Geppert U 2007 Phys. Rev. Lett. 98 1101
[18] Lyutikov M and Gavriil F P 2006 Mon. Not. R. Astron. Soc. 368 690
[19] Nobili L, Turolla R and Zane S 2008 Mon. Not. R. Astron. Soc. 386 1527
[20] van Paradijs J, Taam R E and van den Heuvel E P J 1995 Astron. Astrophys. 299 41
[21] Ghosh P, Angelini L and White N E 1997 Astrophys. J. 478 713
[22] Alpar M A 2001 Astrophys. J. 554 1245
[23] Tong H, Song L M and Xu R X 2010 Astrophys. J. Lett. 725 196
[24] Ertan Ü and Erkut M H 2008 Astrophys. J. 673 1062
[25] Ertan Ü, Göğüs E and Alpar M A 2006 Astrophys. J. 640 345
[26] Thompson C and Beloborodov A M 2005 Astrophys. J. 634 565
[27] Beloborodov A M and Thompson C 2007 Astrophys. J. 657 967
[28] Lamb D Q and Pethick C J 1976 Astrophys. J. Lett. 209 77 [RefAutoNo]Mazurek T J 1976 Astrophys. J. Lett. 207 87
[30] Langanke K and Martinez-Pindo G 2000 Nucl. Phys. A 673 481
[31] Peng Q H 2001 Progress in Physics 21 225 (in Chinese)
[32] Luo Z Q, Liu M Q, Peng Q H and Xie Z H 2006 Chin. J. Astron. Astrophys. 6 455
[33] Gao Z F, Peng Q H, Wang N and Chou C K 2011 A Dispute on the Electron Fermi Energy in Intense Magnetic Fields
[34] Gao Z F, Wang N, Yuan J P, Jiang L and Song D L 2011 Astrophys. Space Sci. 332 129
[35] Shapiro S L and Teukolsky S A 1983 Black Holes, White Drarfs, and Neutron Stars (New York:John Wiley & Sons)
[36] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[37] Amundsen L and Ostgard E 1985 Nucl. Phys. A 437 487
[38] Schaab C, Weber F, Weigel M K and Glendenning N K 1996 Nucl. Phys. A 605 531
[39] Elgaroy O, Engvik L, Hjorth-Jensen M and Osnes E 1996 Nucl. Phys. A 607 425
[40] Elgaroy O, Engvik L, Hjorth-Jensen M and Osnes E 1996 Phys. Rev. Lett. 77 1428
[41] Horvath J E and Allen M P 2011 arXiv:1104.2875v1
[42] Hou Q W, Cao B Y and Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese)
[43] Wang J, Li J Y and Zhang Z G 2010 Acta Phys. Sin. 59 476 (in Chinese)
[44] Wu Z C 2010 Acta Phys. Sin. 59 6326 (in Chinese)
[45] Jiang T, Ouyang J, Liu X J, Zhang L and Ren J L 2011 Acta Phys. Sin. 60 090206 (in Chinese)
[46] Gao X Y and Zhang Z G 2011 Acta Phys. Sin. 60 044401 (in Chinese)
[47] Pang W Z, Yang X J and Xie Z K 2011 Chin. Phys. B 20 049701
[48] Zhang S L, Liu F S, Peng X J, Zhang M J, Li Y H, Ma X J and Xue X D 2011 Acta Phys. Sin. 60 014401 (in Chinese)
[49] Rea N, Esposito P, Turolla R, Tiengo A, Götz D, Göğüs E and Kouveliotou C 2010 Science 330 944
[50] Thompson C and Duncan R C 1996 Astrophys. J. 473 322
[51] Israel G L, Mereghetti S and Stella L 1994 Astrophys. J. 433 25
[52] White N E and Marshall F E 1984 Astrophys. J. 281 354
[53] Steward F, Charles P A and Smale A P 1986 Astrophys. J. 305 814
[54] Mereghetti S, Tiengo A, Stella L, Israel G L, Rea N, Zane S and Oosterbroek T 2004 Astrophys J. 608 427
[55] Ibrahim A I, Markwardt C B, Swank1 J H, Ransom S, Roberts M, Kaspi V, Woods P M, Safi-Harb S, Balman S, Parke W C, Kouveliotou C, Hurley K and Cline T 2004 Astrophys. J. Lett. 609 21
[56] Bernardini F, Israel G L and Dall'Osso S 2009 Astron. Astrophys. 498 195
[57] Gotthelf E V, Halpern J P, Buxton M and Bailyn C 2004 Astrophys. J. 605 368
[58] Mereghetti S 2010 arXiv:1008.2891v1[astro-ph.HE]
[59] Murakami T, Tanaka Y, Kulkarni S R, Ogasaka Y, Sonobe T, Ogawara Y, Aoki T and Yoshida A 1994 Nature 368 127
[60] Sonobe T, Murakami T, Kulkarni S R, Aoki T and Yoshida A 1994 Astrophys. J. 436 23
[1] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[2] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[3] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
[4] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[5] Quantum oscillation measurements in high magnetic field and ultra-low temperature
Pu Wang(王瀑), Gang Li(李岗), Jian-Lin Luo(雒建林). Chin. Phys. B, 2018, 27(7): 077101.
[6] Temperature dependence of heat conduction coefficient in nanotube/nanowire networks
Kezhao Xiong(熊科诏), Zonghua Liu(刘宗华). Chin. Phys. B, 2017, 26(9): 098904.
[7] Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr3, AlCu3, and AlCu2Zr: First-principles study
Parvin R, Parvin F, Ali M S, Islam A K M A. Chin. Phys. B, 2016, 25(8): 083101.
[8] Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions
Tasawar Hayat, Ikram Ullah, Taseer Muhammad, Ahmed Alsaedi, Sabir Ali Shehzad. Chin. Phys. B, 2016, 25(7): 074701.
[9] Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer problems
Juan-Mian Lei(雷娟棉) and Xue-Ying Peng(彭雪莹). Chin. Phys. B, 2016, 25(2): 020202.
[10] Room temperature direct-bandgap electroluminescence from a horizontal Ge ridge waveguide on Si
Chao He(何超), Zhi Liu(刘智), Bu-Wen Cheng(成步文). Chin. Phys. B, 2016, 25(12): 126104.
[11] Numerical solution of the imprecisely defined inverse heat conduction problem
Smita Tapaswini, S. Chakraverty, Diptiranjan Behera. Chin. Phys. B, 2015, 24(5): 050203.
[12] Spectral enhancement of thermal radiation by laser fabricating grating structure on nickel surface
Liu Song (刘嵩), Liu Shi-Bing (刘世炳). Chin. Phys. B, 2015, 24(5): 054401.
[13] Time fractional dual-phase-lag heat conduction equation
Xu Huan-Ying (续焕英), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2015, 24(3): 034401.
[14] MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation
Swati Mukhopadhyay, Iswar Ch, ra Moindal, Tasawar Hayat. Chin. Phys. B, 2014, 23(10): 104701.
[15] Dual solutions in boundary layer flow of a moving fluid over a moving permeable surface in presence of prescribed surface temperature and thermal radiation
Swati Mukhopadhyay. Chin. Phys. B, 2014, 23(1): 014702.
No Suggested Reading articles found!