|
|
Tunneling dynamics of superfluid Fermi gas in a triple-well potential |
Gou Xue-Qiang (苟学强), Meng Hong-Juan (蒙红娟), Wang Wen-Yuan (王文元), Duan Wen-Shan (段文山) |
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract The tunneling dynamics of superfluid Fermi gas in a triple-well potential in the unitarity regime is investigated in the present paper. The fixed points of the (0,0) mode and the (π,π) mode are given. We find that the interaction parameter U and the coupling strength k could have an extreme effect on the quantum tunneling dynamics. We also find that, in the zero mode, only Josophson oscillation appears. However, for the π mode, the trapping phenomena take place. An irregular oscillation of the particle number in each well could appear by adjusting the scanning period T. It is noted that if the scanning period is less than a critical point T*, the particle number will come back to the fixed point with small oscillation, while if T >T* the particle number cannot come back to the fixed point, but with irregular oscillations. The dependence of the critical point T* on the system parameter of coupling strength k is numerically given.
|
Received: 17 November 2012
Revised: 21 January 2013
Accepted manuscript online:
|
PACS:
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
Fund: Project supported by the National Fundamental Research Program of China (Grant Nos. 2007CB814800 and 2011CB921503), the National Natural Science Foundation of China (Grant Nos. 11275156, 91021021, and 10875098), and the Natural Science Foundation of Northwest Normal University (Grant No. NWNU-KJCXGC-03-48). |
Corresponding Authors:
Duan Wen-Shan
E-mail: duanws@nwnu.edu.cn
|
Cite this article:
Gou Xue-Qiang (苟学强), Meng Hong-Juan (蒙红娟), Wang Wen-Yuan (王文元), Duan Wen-Shan (段文山) Tunneling dynamics of superfluid Fermi gas in a triple-well potential 2013 Chin. Phys. B 22 080307
|
[1] |
Wu B and Niu Q 2000 Phys. Rev. A 61 023402
|
[2] |
Zhang J M, Liu W M and Zhou D L 2008 Phys. Rev. A 78 043618
|
[3] |
Zhang P, Wu J H, Zhang X F and Liu W M 2010 Phys. Rev. A 82 043628
|
[4] |
Ye D F, Fu L B and Liu J 2008 Phys. Rev. A 77 013402
|
[5] |
Wu Y and Yang Y Y 2003 Phys. Rev. A 68 013608
|
[6] |
Adhikari S K, Lu H and Pu H 2009 Phys. Rev. A 80 063607
|
[7] |
Adhikari S K and Salasnich L 2008 Phys. Rev. A 77 033618
|
[8] |
Wang W Y, Duan W S, Sun J A and Yang Y 2011 Eur. Phys. J. B 84 283
|
[9] |
Li W D, Zhou X J, Wang Y Q, Liang J Q and Liu W M 2001 Phys. Rev. A 64 015602
|
[10] |
Ancilotto F, Salasnich L and Toigo F 2009 Phys. Rev. A 79 033627
|
[11] |
Salasnich L, Ancilotto F and Toigo F 2009 Laser Phys. 19 636
|
[12] |
Morales-Molina L and Gong J B 2008 Phys. Rev. A 78 041403
|
[13] |
Ostrovskaya E A, Kivshar Y S, Lisak M, Hall B, Cattani F and Anderson D 2000 Phys. Rev. A 61 031601
|
[14] |
Fu L B, Liu J and Chen S G 2002 Phys. Lett. A 298 388
|
[15] |
Choi S and Sundaram B 2008 Phys. Rev. A 77 053613
|
[16] |
Chiara G D, Calarco T, Fishman S and Morigi G 2008 Phys. Rev. A 78 043414
|
[17] |
Fu L B, Ye D F, Lee C, Zhang W and Liu J 2009 Phys. Rev. A 80 013619
|
[18] |
Meng H J, Yang Y, Wang W Y, Qi P T, Ma Y Y, Ma Y, Wang S J and Duan W S 2012 Acta Phys. Sin. 61 060303 (in Chinese)
|
[19] |
Li S C, Fu L B, Duan W S and Liu J 2008 Phys. Rev. A 78 063621
|
[20] |
Liu J, Wu B and Niu Q 2003 Phys. Rev. Lett. 90 170404
|
[21] |
Ramsey N F 1950 Phys. Rev. 78 695
|
[22] |
Donley E A, Claussen N R, Thompson S T and Wieman C E 2002 Nature 417 529
|
[23] |
Santarelli G, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619
|
[24] |
Fertig C and Gibble K 2000 Phys. Rev. Lett. 85 1622
|
[25] |
Gustavson T L, Bouyer P and Kasevich M A 1997 Phys. Rev. Lett. 78 2046
|
[26] |
Chen A X, Qiu W Y and Wang Z P 2008 Chin. Phys. B 17 4204
|
[27] |
Weiss D S, Young B C and Chu S 1993 Phys. Rev. Lett. 70 2706
|
[28] |
Weel M and Kumarakrishnan A 2003 Phys. Rev. A 67 061602
|
[29] |
Widera A, Mandel O, Greiner M, Kreim S, Hänsch T W and Bloch I 2004 Phys. Rev. Lett. 92 160406
|
[30] |
Li J H 2010 Chin. Phys. B 19 040502
|
[31] |
Zhang X F, Liu X X and Zhang P 2010 Chin. Phys. Lett. 27 070306
|
[32] |
Adhikari S K and Salasnich L 2008 Phys. Rev. A 78 043616
|
[33] |
Wen W, Shen S Q and Huang G X 2010 Phys. Rev. B 81 014528
|
[34] |
Wen W and Huang G X 2009 Phys. Rev. A 79 023605
|
[35] |
Liu J, Fu L B, Ou B Y, Chen S G, Choi D I, Wu B and Niu Q 2002 Phys. Rev. A 66 023404
|
[36] |
Tacla A B, Boixo S, Datta A, Shaji A and Caves C M 2010 Phys. Rev. A 82 053636
|
[37] |
Peng P and Li G Q 2009 Chin. Phys. B 18 3221
|
[38] |
Giorgini S, Pitaevskii L P and Stringeri S 2008 Rev. Mod. Phys. 80 1215
|
[39] |
Wang G F, Ye D F, Fu L B, Chen X Z and Liu J 2006 Phys. Rev. A 74 033414
|
[40] |
Liu J, Zhang C W, Raizen M G and Niu Q 2006 Phys. Rev. A 73 013601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|