Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074211    DOI: 10.1088/1674-1056/22/7/074211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical study on the photonic band gap in one-dimensional photonic crystals with graded multilayer structure

Fan Chun-Zhen (范春珍)a b, Wang Jun-Qiao (王俊俏)a, He Jin-Na (何金娜)a, Ding Pei (丁佩)c, Liang Er-Jun (梁二军)a
a School of Physical Science and Engineering, and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052, China;
b State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;
c Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, China
Abstract  We theoretically investigate the photonic band gap in one-dimensional photonic crystals with a graded multilayer structure. The proposed structure is constituted of the alternating composite layer (metallic nanoparticles embedded in TiO2 film) and the air layer. Regarding the multilayer as a series of capacitance, effective optical properties are derived. The dispersion relation is obtained with the solution of the transfer matrix equation. With a graded structure in the composite layer, numerical results show that the position and width of the photonic band gap can be effectively modulated by varying the number of the graded composite layers, the volume fraction of nanoparticles and the external stimuli.
Keywords:  graded photonic crystals      multilayer      band gap  
Received:  22 August 2012      Revised:  23 November 2013      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  47.65.Cb (Magnetic fluids and ferrofluids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974183 and 11104252), the Ministry of Education of China (Grant No. 20114101110003), the Fund for Science and Technology Innovation Team of Zhengzhou (2011-03), the Aeronautical Science Foundation of China (Grant No. 2011ZF55015), the Basic and Frontier Technology Research Program of Henan Province, China (Grant Nos. 112300410264 and 122300410162), the Cooperation Fund with Fudan University, China (Grant No. KL2011-01), and the Chinese National Key Basic Research Special Fund (Grant No. 2011CB922004).
Corresponding Authors:  Fan Chun-Zhen     E-mail:  chunzhen@zzu.edu.cn

Cite this article: 

Fan Chun-Zhen (范春珍), Wang Jun-Qiao (王俊俏), He Jin-Na (何金娜), Ding Pei (丁佩), Liang Er-Jun (梁二军) Theoretical study on the photonic band gap in one-dimensional photonic crystals with graded multilayer structure 2013 Chin. Phys. B 22 074211

[1] Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 Photonic Crystals: Molding the Flow of Light 2nd edn. (Princeton: Princeton University Press)
[2] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[3] John S 1987 Phys. Rev. Lett. 58 2486
[4] Zhang Y, Wang J, Huang Y, Song Y and Jiang L 2011 J. Mater. Chem. 21 14113
[5] Zhu Q Y, Fu Y Q, Hu D Q and Zhang Z M 2012 Chin. Phys. B 21 064220
[6] Shimomuraa M and Sawadaishib T 2001 Curr. Opin. Colloid Interface Sci. 6 11
[7] Ren C, Cheng L F, Kang F, Gan L, Zhang D Z and Li Z Y 2012 Chin. Phys. B 21 104210
[8] Wang Y, Huang X Q and Gong C D 2000 Chin. Phys. Lett. 17 498
[9] Zhuang F, Wu L and He S L 2002 Chin. Phys. 11 0834
[10] Li L, Xie Y C, Wang Y Q, Hu X Y, Feng Z F and Cheng B Y 2003 Chin. Phys. Lett. 20 1767
[11] Colvin V L 2001 MRS Bull. 26 637
[12] Colodrero S, Ocana M and Mguez H 2008 Langmuir 24 4430
[13] Colodrero S, Ocana M, Gonzalez-Elipe A R and Miguez H 2008 Langmuir 24 9135
[14] Lozano G, Colodrero S, Caulier O, Calvo M E and Miguez H 2010 J. Phys. Chem. C 114 3681
[15] Prevo B G and Velev O D 2004 Langmuir 20 2099
[16] Wang G, Huang J P and Yu K W 2008 Opt. Lett. 33 2200
[17] Huang J P and Yu K W 2006 Phys. Rep. 431 87
[18] Jiang H, Sabarinathan J, Manifar T and Mittler S 2009 J. Lightwave Technol. 27 2264
[19] Masaya N 2010 Rep. Prog. Phys. 73 096501
[20] Ge J P and Yin Y D 2011 Angew. Chem. Int. Ed. 50 1492
[21] Suresh S 2001 Science 292 2447
[22] Shvartsburg A B, Kuzmiak V and Petite G 2007 Phys. Rep. 452 33
[23] Rauh H, Yampolskaya G I and Yampolskii S V 2010 New J. Phys. 12 073033
[24] Sang Z F and Li Z Y 2007 Opt. Commun. 273 162
[25] Shiveshwari L and Mahto P 2006 Solid State Commun. 138 160
[26] Kong X K, Liu S B, Zhang H F and Guan H L 2011 Opt. Commun. 284 2915
[27] Johnson P B and Christy R W 1974 Phys. Rev. B 9 5056
[28] Fan C Z, Wang G and Huang J P 2008 J. Appl. Phys. 103 094107
[29] Debord J D and Lyon L A 2000 J. Phys. Chem. B 104 6327
[30] Park W and Lee J B 2004 Appl. Phys. Lett. 85 4845
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[4] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[5] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[6] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[7] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[10] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[11] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[12] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[13] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[14] Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses
Chang-Qing Zhu(朱常青), Jun-Hao Tan(谭军豪), Yu-Hang He(何雨航), Jin-Guang Wang(王进光), Yi-Fei Li(李毅飞), Xin Lu(鲁欣), Ying-Jun Li(李英骏), Jie Chen(陈洁), Li-Ming Chen(陈黎明), and Jie Zhang(张杰). Chin. Phys. B, 2021, 30(9): 098701.
[15] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
No Suggested Reading articles found!