Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 068101    DOI: 10.1088/1674-1056/22/6/068101
Special Issue: TOPICAL REVIEW — Topological insulator
TOPICAL REVIEW—Topological insulator Prev   Next  

Molecular-beam epitaxy of topological insulator Bi2Se3 (111) and (221) thin films

Xie Mao-Hai (谢茂海), Guo Xin (郭欣), Xu Zhong-Jie (徐忠杰), Ho Wing-Kin (何永健)
Physics Department, The University of Hong Kong, Pokfulam Road, Hong Kong, China
Abstract  This paper presents an overview of growth of Bi2Se3, a prototypical three-dimensional topological insulator, by molecular-beam epitaxy on various substrates. Comparison is made between growth of Bi2Se3 (111) on van der Waals (vdW) and non-vdW substrates, with attention paid to twin suppression and strain. Growth along the [221] direction of Bi2Se3 on InP (001) and GaAs (001) substrates is also discussed.
Keywords:  topological insulator      molecular-beam epitaxy      Bi2Se3      twin domain      strain  
Received:  02 April 2013      Accepted manuscript online: 
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  68.55.-a (Thin film structure and morphology)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
Fund: Project supported by the Research Grant Council (RGC) of Hong Kong Special Administrative Region for its financial support under the General Research Funds (Grant Nos. 706110 and 706111) and the SRFDP and RGCERG Joint Research Scheme sponsored by the RGC of Hong Kong and the Ministry of Education of China (M-HKU709/l2).
Corresponding Authors:  Xie Mao-Hai     E-mail:  mhxie@hku.hk

Cite this article: 

Xie Mao-Hai (谢茂海), Guo Xin (郭欣), Xu Zhong-Jie (徐忠杰), Ho Wing-Kin (何永健) Molecular-beam epitaxy of topological insulator Bi2Se3 (111) and (221) thin films 2013 Chin. Phys. B 22 068101

[1] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[2] Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature 460 1101
[3] Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J and Ong N P 2009 Phys. Rev. Lett. 103 246601
[4] Analytis J G, McDonald R D, Riggs S C, Chu J H, Boebinger G S and Fisher I R 2010 Nat. Phys. 6 960
[5] Zhang G H, Qin H J, Teng J, Guo J D, Guo Q L, Dai X, Fang Z and Wu K H 2009 Appl. Phys. Lett. 95 053114
[6] Li H D, Wang Z Y, Kan X, Guo X, He H T, Wang Z, Wang J N, Wong T L, Wang N and Xie M H 2010 New J. Phys. 12 103038
[7] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q A, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nat. Phys. 6 584
[8] Cheng P, Song C L, Zhang T, Zhang Y Y, Wang Y L, Jia J F, Wang J, Wang Y Y, Zhu B F, Chen X, Ma X C, He K, Wang L L, Dai X, Fang Z, Xie X C, Qi X L, Liu C X, Zhang S C and Xue Q K 2010 Phys. Rev. Lett. 105 076801
[9] Richardella A, Zhang D M, Lee J S, Koser A, Rench D W, Yeats A L, Buckley B B, Awschalom D D and Samarth N 2010 Appl. Phys. Lett. 97 262104
[10] Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q and Lu L 2010 Phys. Rev. Lett. 105 176602
[11] He H T, Wang G, Zhang T, Sou I K, Wong G K L, Wang J N, Lu H Z, Shen S Q and Zhang F C 2011 Phys. Rev. Lett. 106 166805
[12] Kou X F, He L, Xiu F X, Lang M R, Liao Z M, Wang Y, Fedorov A V, Yu X X, Tang J S, Huang G, Jiang X W, Zhu J F, Zou J and Wang K L 2011 Appl. Phys. Lett. 98 242102
[13] Li H D, Wang Z Y, Guo X, Wong T L, Wang N and Xie M H 2011 Appl. Phys. Lett. 98 043104
[14] Wang Z Y, Guo X, Li H D, Wong T L, Wang N and Xie M H 2011 Appl. Phys. Lett. 99 023112
[15] Taskin A A, Sasaki S, Segawa K and Ando Y 2012 Phys. Rev. Lett. 109 066803
[16] He L, Xiu F X, Yu X X, Teague M, Jiang W J, Fan Y B, Kou X F, Lang M R, Wang Y, Huang G, Yeh N C and Wang K L 2012 Nano Lett. 12 1486
[17] Tarakina N V, Schreyeck S, Borzenko T, Schumacher C, Karczewski G, Brunner K, Gould C, Buhmann H and Molenkamp L W 2012 Cryst. Growth Des. 12 1913
[18] Zhang L, Hammond R, Dolev M, Liu M, Palevski A and Kapitulnik A 2012 Appl. Phys. Lett. 101 153105
[19] Schreyeck S, Tarakina N V, Karczewski G, Schumacher C, Borzenko T, Brune C, Buhmann H, Gould C, Brunner K and Molenkamp L W 2013 Appl. Phys. Lett. 102 041914
[20] Guo X, Xu Z J, Liu H C, Zhao B, Dai X Q, He H T, Wang J N, Liu H J, Ho W K and Xie M H 2013 Appl. Phys. Lett., in print
[21] Analytis J G, Chu J H, Chen Y L, Corredor F, McDonald R D, Shen Z X and Fisher I R 2010 Phys. Rev. B 81 205407
[22] Wang J, Li H D, Chang C Z, He K, Lee J S, Lu H Z, Sun Y, Ma X C, Samarth N, Shen S Q, Xue Q K, Xie M H and Chan M H W 2012 Nano Res. 5 739
[23] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[24] Hanaguri T, Igarashi K, Kawamura M, Takagi H and Sasagawa T 2010 Phys. Rev B 82 081305
[25] Koma A 1992 Surf. Sci. 267 29
[26] Koma A 1992 Thin Solid Films 216 72
[27] He L, Xiu F X, Wang Y, Fedorov A V, Huang G, Kou X F, Lang M R, Beyermann W P, Zou J and Wang K L 2011 J. Appl. Phys. 109 103702
[28] Song C L, Wang Y L, Jiang Y P, Zhang Y, Chang C Z, Wang L L, He K, Chen X, Jia J F, Wang Y Y, Fang Z, Dai X, Xie X C, Qi X L, Zhang S C, Xue Q K and Ma X C 2010 Appl. Phys. Lett. 97 143118
[29] Wang Z Y, Li H D, Guo X, Ho W K and Xie M H 2011 J. Cryst. Growth 334 96
[30] Greenberg J 2001 Thermodynamic Basis of Crystal Growth: P-T-X Phase Equilibrium and Non-stoichiometry (Berlin: Springer)
[31] Bringans R D and Olmstead M A 1989 Phys. Rev. B 39 12985
[32] Bansal N, Kim Y S, Edrey E, Brahlek M, Horibe Y, Iidad K, Tanimura M, Li G H, Feng T, Lee H D, Gustafsson T, Andrei E and Oh S 2011 Thin Solid Films 520 224
[33] Meyerson B S, Himpsel F J and Uram K J 1990 Appl. Phys. Lett. 57 1034
[34] Xie M H, Seutter S M, Zhu W K, Zheng L X, Wu H S and Tong S Y 1999 Phys. Rev. Lett. 82 2749
[35] Liu F, private communication
[36] Vandermerwe J H 1970 J. Appl. Phys. 41 4725
[37] Matthews J W and Blakeslee A E 1974 J. Cryst. Growth 27 118
[38] Burton W K, Cabrera N and FrankF C 1951 Phil. Trans. R. Soc. A 243 299
[39] Liu Y, Weinert M and Li L 2012 Phys. Rev. Lett. 108 115501
[40] Johnson M D, Orme C, Hunt A W, Graff D, Sudijono J, Sander L M and Orr B G 1994 Phys. Rev. Lett. 72 116
[41] Stroscio J A, Pierce D T, Stiles M D, Zangwill A and Sander L M 1995 Phys. Rev. Lett. 75 4246
[42] Ehrlich G and Hudda F 1966 J. Chem. Phys. 44 1039
[43] Schwoebel R L 1969 J. Appl. Phys. 40 614
[44] Ferhat M, Liautard B, Brun G, Tedenac J C, Nouaoura M and Lassabatere L 1996 J. Cryst. Growth 167 122
[45] Tabor P, Keenan C, Urazdhin S and Lederman D 2011 Appl. Phys. Lett. 99 013111
[46] Liu X, Smith D J, Fan J, Zhang Y H, Cao H, Chen Y P, Leiner J, Kirby B J, Dobrowolska M and Furdyna J K 2011 Appl. Phys. Lett. 99 171903
[47] Takagaki Y and Jenichen B 2012 Semicond. Sci. Technol. 27 035015
[48] Xu Z J, Guo X, Yao M Y, He H T, Miao L, Jiao L, Liu H J, Wang J N, Qian D, Jia J F, Ho W K, and Xie M H 2013 Adv. Mater. 25 1557
[49] He H T, Liu H C, Li B K, Wang J N, Guo X, Xu Z J and Xie M H 2013 unpublished
[50] Liu W L, Peng X Y, Tang C, Sun L Z, Zhang K W and Zhong J X 2011 Phys. Rev. B 84 245105
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[5] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[6] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[7] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[8] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[13] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[14] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[15] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
No Suggested Reading articles found!