|
|
Spectroscopy via adiabatic covariant action for the Bañados-Teitelboim-Zanelli (BTZ) black hole |
Li Hui-Ling (李慧玲), Lin Rong (林榕), Cheng Li-Ying (程丽英) |
College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China |
|
|
Abstract Very recently, via the covariant form of the adiabatic invariant I=f pidqi instead of I=∫ pidqi, an equally spaced spectroscopy of a Schwarzschild black hole was derived. The emphasis was given to the covariant of results. In this paper, we extend that work in a spherically symmetric spacetime to the case of a rotating Bañados-Teitelboim-Zanelli (BTZ) black hole. It is noteworthy that the adiabatic covariant action I=f pidqi gives the same value for the black hole spectroscopy in different coordinates. The result shows that the area spectrum is ΔA=8π lP2, which confirms the initial proposal of Bekenstein. And the result is consistent with that already obtained by other methods.
|
Received: 07 December 2012
Revised: 26 December 2012
Accepted manuscript online:
|
PACS:
|
04.70.-s
|
(Physics of black holes)
|
|
04.70.Dy
|
(Quantum aspects of black holes, evaporation, thermodynamics)
|
|
97.60.Lf
|
(Black holes)
|
|
Fund: Project supported by the Scientific Research Foundation of the Education Department of Liaoning Province, China (Grant No. L2011195). |
Corresponding Authors:
Li Hui-Ling
E-mail: LHL51759@126.com
|
Cite this article:
Li Hui-Ling (李慧玲), Lin Rong (林榕), Cheng Li-Ying (程丽英) Spectroscopy via adiabatic covariant action for the Bañados-Teitelboim-Zanelli (BTZ) black hole 2013 Chin. Phys. B 22 050402
|
[1] |
Majhi B R and Vagenas E C 2011 Phys. Lett. B 701 623
|
[2] |
Jiang Q Q and Han Y 2012 Phys. Lett. B 718 584
|
[3] |
Akhmedov E T, Akhmedova V, Singleton D 2006 Phys. Lett. B 642 124
|
[4] |
Akhmedova V, Pilling T, Gill A D and Singleton D 2008 Phys. Lett. B 666 269
|
[5] |
Bekenstein J D 1974 Lett. Nuovo Cimento. 11 467
|
[6] |
Bekenstein J D 1973 Phys. Rev. D 7 2333
|
[7] |
Vagenas E C 2008 J. High Energy Phys. 0811 073
|
[8] |
Carlip S 1995 Class. Quantum Grav. 12 2853
|
[9] |
Parikh M K and Wiltzek F 2000 Phys. Rev. Lett. 85 5042
|
[10] |
Parikh M K 2002 Phys. Lett. B 546 189
|
[11] |
Zhang J Y and Zhao Z 2005 Phys. Lett. B 618 14
|
[12] |
Zhang J Y and Zhao Z 2005 Nucl. Phys. B 725 173
|
[13] |
Liu B S and Zhang J Y 2012 Chin. Phys. B 21 070402
|
[14] |
Wu S Q and Jiang Q Q 2006 J. High Energy Phys. 0603 079
|
[15] |
Jiang Q Q, Wu S Q and Cai X 2007 Phys. Lett. B 647 200
|
[16] |
Jiang Q Q, Wu S Q and Cai X 2007 Phys. Rev. D 75 064029
|
[17] |
Vagenas E C 2001 Phys. Lett. B 503 399
|
[18] |
Vagenas E C 2002 Mod. Phys. Lett. A 17 609
|
[19] |
Vagenas E C 2002 Phys. Lett. B 533 302
|
[20] |
Chen D Y, Jiang Q Q and Zu X T 2008 Phys. Lett. B 665 106
|
[21] |
Chen D Y, Yang H T and Zu X T 2008 Eur. Phys. J. C 56 119
|
[22] |
Kerner R and Mann R B 2008 Phys. Lett. B 665 277
|
[23] |
Kerner R and Mann R B 2006 Phys. Rev. D 73 104010
|
[24] |
Kerner R and Mann R B 2007 Phys. Rev. D 75 084022
|
[25] |
Li H L 2010 Eur. Phys. J. C 65 547
|
[26] |
Li H L, Qi W Y and Lin R 2009 Phys. Lett. B 677 332
|
[27] |
Li H L, Lin R and Cheng L Y 2012 Europhys. Lett. 98 30002
|
[28] |
Li H L 2011 Chin. Phys. B 20 030402
|
[29] |
Li R and Ren J R 2008 Phys. Lett. B 661 370
|
[30] |
Li R, Ren J R and Wei S W 2008 Class. Quantum Grav. 25 125016
|
[31] |
Angheben M, Nadalini M, Vanzo L and Zerbini S 2005 J. High Energy Phys. 0505 014
|
[32] |
Zhang L C, Li H F and Zhao R 2010 Europhys. Lett. 89 20008
|
[33] |
Zhao R and Zhang S L 2006 Phys. Lett. B 641 318
|
[34] |
Zhao R, Wu Y Q, Zhang L C and Li H F 2009 Eur. Phys. J. C 60 685
|
[35] |
Lin K and Yang S Z 2009 Phys. Rev. D 79 064035
|
[36] |
Lin K and Yang S Z 2009 Phys. Lett. B 674 127
|
[37] |
Lin K and Yang S Z 2009 Phys. Lett. B 680 506
|
[38] |
Zeng X X, Zhou S W and Liu W B 2012 Chin. Phys. B 21 090402
|
[39] |
Chen J H and Wang Y J 2010 Chin. Phys. B 19 060401
|
[40] |
Shao J Z and Wang Y J 2012 Chin. Phys. B 21 040404
|
[41] |
Lin K and Yang S Z 2011 Chin. Phys. B 20 110403
|
[42] |
Pan W Z, Yang X J and Xie Z K 2011 Chin. Phys. B 20 049701
|
[43] |
Li H L and Yang S Z 2009 Chin. Phys. B 18 4721
|
[44] |
Zhao R, Zhang L C, Wu Y Q and Li H F 2010 Chin. Phys. B 19 010402
|
[45] |
Fang H Z 2010 Chin. Phys. B 19 110506
|
[46] |
Hod S 1998 Phys. Rev. Lett. 81 4293
|
[47] |
Kunstatter G 2003 Phys. Rev. Lett. 90 161301
|
[48] |
Maggiore M 2008 Phys. Rev. Lett. 100 141301
|
[49] |
Liu Y X, Wei S W, Li R and Ren J R 2009 J. High Energy Phys. 0903 076
|
[50] |
Kwon Y and Nam S 2010 Class. Quant. Grav. 27 125007
|
[51] |
Li H L, Lin R and Cheng L Y 2012 Gen. Relativ. Gravit. 44 2865
|
[52] |
Li H L 2012 Chin. Phys. B 21 120401
|
[53] |
Li W, Xu L and Lu J 2009 Phys. Lett. B 676 177
|
[54] |
Chen D Y, Yang H T and Zu X T 2010 Eur. Phys. J. C 69 289
|
[55] |
Zeng X X, Liu X M and Liu W B 2012 Eur. Phys. J. C 72 1967
|
[56] |
Zeng X X and Liu W B 2012 Eur. Phys. J. C 72 1987
|
[57] |
Jiang Q Q and Cai X 2010 J. High Energy Phys. 1011 066
|
[58] |
Liu C Z 2012 Chin. Phys. B 21 070401
|
[59] |
Painlevé P 1921 La mécanique classique et la theorie de la relativité, Compt. Rend. Acad. Sci. (Paris) 173 677
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|