Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 037802    DOI: 10.1088/1674-1056/22/3/037802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical properties of InGaAsBi/GaAs strained quantum wells studied by temperature-dependent photoluminescence

Gu Yi (顾溢)a, Zhang Yong-Gang (张永刚)a, Song Yu-Xin (宋禹忻)b, Ye Hong (叶虹)b, Cao Yuan-Ying (曹远迎)a, Li Ai-Zhen (李爱珍)a, Wang Shu-Min (王庶民)a b
a State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences, Shanghai 200050, China;
b Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg SE-41296, Sweden
Abstract  The effect of bismuth on the optical properties of InGaAsBi/GaAs quantum well structures is investigated by using the temperature-dependent photoluminescence from 12 K to 450 K. The incorporation of bismuth in the InGaAsBi quantum well is confirmed and found to result in a red shift of photoluminescence wavelength of 27.3 meV at 300 K. The photoluminescence intensity is significantly enhanced by about 50 times at 12 K with respect to that of the InGaAs quantum well due to the surfactant effect of bismuth. The temperature-dependent integrated photoluminescence intensities of the two samples reveal different behaviors related to various non-radiative recombination processes. The incorporation of bismuth also induces alloy non-uniformity in the quantum well, leading to an increased photoluminescence linewidth.
Keywords:  InGaAsBi      strained quantum wells      photoluminescence  
Received:  21 August 2012      Revised:  26 November 2012      Accepted manuscript online: 
PACS:  78.55.Cr (III-V semiconductors)  
  78.67.De (Quantum wells)  
  61.05.cp (X-ray diffraction)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB619200), the National Natural Science Foundation of China (Grant Nos. 61275113, 61204133, and 60906047), the Innovative Founding of Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, and the Swedish Research Council.
Corresponding Authors:  Zhang Yong-Gang     E-mail:  ygzhang@mail.sim.ac.cn

Cite this article: 

Gu Yi (顾溢), Zhang Yong-Gang (张永刚), Song Yu-Xin (宋禹忻), Ye Hong (叶虹), Cao Yuan-Ying (曹远迎), Li Ai-Zhen (李爱珍), Wang Shu-Min (王庶民) Optical properties of InGaAsBi/GaAs strained quantum wells studied by temperature-dependent photoluminescence 2013 Chin. Phys. B 22 037802

[1] Francoeur S, Seong M J, Mascarenhas A, Tixier S, Adamcyk M and Tiedje T 2003 Appl. Phys. Lett. 82 3874
[2] Yoshida J, Kita T, Wada O and Oe K 2003 Jpn. J. Appl. Phys. 42 371
[3] Alberi K, Dubon O D, Walukiewicz W, Yu K M, Bertulis K and Krotkus A 2007 Appl. Phys. Lett. 91 051909
[4] Lee J J, Kim J D and Razeghi M 1998 Appl. Phys. Lett. 73 602
[5] Song Y X, Wang S M, Roy I S, Shi P X and Hallen A 2012 J. Vac. Sci. Technol. B 30 02B114
[6] Svensson S P, Hier H, Sarney W L, Donetsky D, Wang D and Belenky G 2012 J. Vac. Sci. Technol. B 30 02B109
[7] Feng G, Yoshimoto M, Oe K, Chayahara A and Horino Y 2005 Jpn. J. Appl. Phys. 44 L1161
[8] Zhong Y, Dongmo P B, Petropoulos J P and Zide J M O 2012 Appl. Phys. Lett. 100 112110
[9] Petropoulos J P, Zhong Y and Zide J M O 2011 Appl. Phys. Lett. 99 031110
[10] Sung L W and Lin H H 2003 Appl. Phys. Lett. 83 1107
[11] Chen W C, Su Y K, Chuang R W, Yu H C, Tsai M C, Cheng K Y, Horng J B, Hu C and Tsau S 2008 IEEE Photon. Technol. Lett. 20 264
[12] Wei Y Q, Sadeghi M, Wang S M, Modh P and Larsson A 2005 Electron. Lett. 41 1328
[13] Zhao H, Adolfsson G, Wang S M, Sadeghi M and Larsson A 2008 Electron. Lett. 44 416
[14] Ptak A J, Beaton D A and Mascarenhas A 2012 J. Cryst. Growth 351 122
[15] Naceur H B, Mzoughi T, Moussa I, Nguyen L, Rebey A and Jani B E 2010 Physica E 43 106
[16] Zhang Y G, Gu Y, Wang K, Fang X, Li A Z and Liu K H 2012 Rev. Sci. Instrum. 83 053106
[17] Varshni Y P 1967 Physica 34 149
[18] Shen W Z, Shen S C, Tang W G, Zhao Y and Li A Z 1995 J. Appl. Phys. 78 5696
[19] Lei H P, Wu H Z, Lao Y F, Qi M, Li A Z and Shen W Z 2003 J. Cryst. Growth. 256 96
[20] Gu Y, Zhang Y G, Li A Z, Wang K, Li C and Li Y Y 2009 Chin. Phys. Lett. 26 077808
[21] Sun H D, Calvez S, Dawson M D, Gupta J A, Aers G C and Sproule G I 2006 Appl. Phys. Lett. 89 101909
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[6] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[7] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[13] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[14] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[15] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
No Suggested Reading articles found!