Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 037303    DOI: 10.1088/1674-1056/22/3/037303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dislocation-mediated creep process in nanocrystalline Cu

Mu Jun-Wei (穆君伟), Sun Shi-Cheng (孙世成), Jiang Zhong-Hao (江忠浩), Lian Jian-She (连建设), Jiang Qing (蒋青)
Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
Abstract  Nanocrystalline Cu with average grain sizes ranging from ~24.4 to 131.3 nm were prepared by electric brush-plating technique. Nanoindentation tests were performed within a wide strain rate range, and the creep process of nanocrystalline Cu during holding period and its relationship to dislocation and twin structures were examined. It was demonstrated that creep strain and creep strain rate are considerably significant for smaller grain size and higher loading strain rate, and are far higher than those predicted by the models of Cobble creep and grain boundary sliding. The analysis based on the calculations and experiments reveals that the significant creep deformation arises from the rapid absorption of high density dislocations stored in loading regime. Our experiments imply that stored dislocations during loading are highly unstable and dislocation activity can proceed and lead to significant post-loading plasticity.
Keywords:  nanocrystalline      creep      dislocation      nanoindentation  
Received:  06 November 2012      Revised:  17 December 2012      Accepted manuscript online: 
PACS:  73.63.Bd (Nanocrystalline materials)  
  62.20.Hg (Creep)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
  62.90.+k (Other topics in mechanical and acoustical properties of condensed matter)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50771049 and 50871046) and the National Basic Research Program of China (Grant No. 2010CB 631001).
Corresponding Authors:  Jiang Zhong-Hao     E-mail:  jzh@jlu.edu.cn

Cite this article: 

Mu Jun-Wei (穆君伟), Sun Shi-Cheng (孙世成), Jiang Zhong-Hao (江忠浩), Lian Jian-She (连建设), Jiang Qing (蒋青) Dislocation-mediated creep process in nanocrystalline Cu 2013 Chin. Phys. B 22 037303

[1] Schiøtz J and Jacobsen K W 2003 Science 301 1357
[2] Kumar K, Van Swygenhoven H and Suresh S 2003 Acta Mater. 51 5743
[3] Wolf D, Yamakov V, Phillpot S, Mukherjee A and Gleiter H 2005 Acta Mater. 53 1
[4] Shao Y F, Yang X, Zhao X and Wang S Q 2012 Chin. Phys. B 21 083101
[5] Mu J W, Jiang Z H, Zheng W T, Tian H W, Lian J S and Jiang Q 2012 J. Appl. Phys. 111 063506
[6] Gu C D, Lian J S, Jiang Q and Zheng W T 2007 J. Phys. D 40 7440
[7] Li P Y, Zhang X Y, Ni H T, Cao Z H and Meng X K 2012 Chin. Phys. Lett. 29 026201
[8] Yue Y H, Wang L H, Zhang Z and Han X D 2012 Chin. Phys. Lett. 29 066201
[9] Conrad H 2003 Mater. Sci. Eng. A 341 216
[10] Wei Q, Cheng S, Ramesh K and Ma E 2004 Mater. Sci. Eng. A 381 71
[11] Chen J, Lu L and Lu K 2006 Scripta Mater. 54 1913
[12] Zhang J M and Xu K W 2004 Acta Phys. Sin. 53 2439 (in Chinese)
[13] Wang G Y, Lian J S, Jiang Z H, Qin L Y and Jiang Q 2009 J. Appl. Phys. 106 086103
[14] Khan A S, Farrokh B and Takacs L 2008 J. Mater. Sci. 43 3305
[15] Zhang X, Fujita T, Pan D, Yu J, Sakurai T and Chen M 2010 Mater. Sci. Eng. A 527 2297
[16] Van Swygenhoven H 2002 Science 296 66
[17] Imran M, Hussain F, Rashid M and Ahmad S A 2012 Chin. Phys. B 21 126802
[18] Shao Y F, Zhao X, Li J H and Wang S Q 2013 Comput. Mater. Sci. 67 346
[19] Mu J W, Zhao L, Sun S C, Jiang Z H and Lian J S 2012 Integr. Ferroelectr. 137 52
[20] Jiang Z H, Liu X L, Li G Y, Jiang Q and Lian J S 2006 Appl. Phys. Lett. 88 143113
[21] Huang P, Wang F, Xu M, Xu K and Lu T 2010 Acta Mater. 58 5196
[22] Elmustafa A A, Tambwe M F and Stone D S 2002 Surface Engineering 2002-Synthesis, Characterization and Applications December 2, 2002 Boston, USA, p.Y8.14.1
[23] Gray G, Lowe T, Cady C, Valiev R and Aleksandrov I 1997 Nanostruct. Mater. 9 477
[24] Carreker R and Hibbard W 1953 Acta Metall. 1 654
[25] Bochniak W 1995 Acta Metall. et. Mater. 43 225
[26] Cao Z, Lu H, Meng X and Ngan A 2009 J. Appl. Phys. 105 083521
[27] Lucas B and Oliver W 1999 Metall. Mater. Trans. A 30 601
[28] Zhang K, Weertman J and Eastman J 2005 Appl. Phys. Lett. 87 061921
[29] Zou Y T, Lei L, Wang Z, Wang J H, Zhang W and He D 2009 Chin. Phys. B 18 815
[30] Coble R 1963 J. Appl. Phys. 34 1679
[31] Lüthy H, White R A and Sherby O D 1979 Mater. Sci. Eng. 39 211
[32] Chokshi A, Rosen A, Karch J and Gleiter H 1989 Scripta Metall. 23 1679
[33] Cai B, Kong Q, Lu L and Lu K 1999 Scripta Mater. 41 755
[34] Valiev R, Kozlov E, Ivanov Y F, Lian J, Nazarov A and Baudelet B 1994 Acta Metall. et. Mater. 42 2467
[35] Asaro R J and Suresh S 2005 Acta Mater. 53 3369
[36] Wei Y J and Gao H J 2008 Mater. Sci. Eng. A 478 16
[37] Wei Y J, Bower A F and Gao H J 2008 Acta Mater. 56 1741
[38] Van Swygenhoven H, Derlet P and Froseth A 2006 Acta Mater. 54 1975
[39] Wang Y, Hamza A and Ma E 2006 Acta Mater. 54 2715
[40] Carlton C and Ferreira P 2007 Acta Mater. 55 3749
[41] Shao Y F, Yang X, Zhao X and Wang S Q 2012 Chin. Phys. B 21 093104
[42] Zhang J Y, Liu G, Wang R H, Li J, Sun J and Ma E 2010 Phys. Rev. B 81 172104
[43] Wang Z, Wang Y, Liao X, Zhao Y, Lavernia E, Zhu Y, Horita Z and Langdon T 2009 Scripta Mater. 60 52
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[4] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[5] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[6] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
[7] Speedup of self-propelled helical swimmers in a long cylindrical pipe
Ji Zhang(张骥), Kai Liu(刘凯), and Yang Ding(丁阳). Chin. Phys. B, 2022, 31(1): 014702.
[8] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[9] Weakening effect of plastic yielding inception in thin hard coating systems
Xiao Huang(黄啸), Shujun Zhou(周述军), and Tianmin Shao(邵天敏). Chin. Phys. B, 2021, 30(3): 038104.
[10] Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE
Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(3): 036801.
[11] Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation
Kai-Heng Shao(邵凯恒), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(11): 116104.
[12] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[13] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[14] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[15] Modification of the Peierls-Nabarro model for misfit dislocation
Shujun Zhang(张淑君), Shaofeng Wang(王少峰). Chin. Phys. B, 2020, 29(5): 056102.
No Suggested Reading articles found!