Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 037304    DOI: 10.1088/1674-1056/22/3/037304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Wave-vector filtering effect of electric–magnetic barrier in HgTe quantum wells

Zou Yong-Lian (邹永连)a, Song Jun-Tao (宋俊涛)b
a Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, China
Abstract  Because of helicity of electrons in HgTe quantum wells (QWs) with inverted band structure, the electrons cannot be confined by electric barriers since electrons can tunnel the barriers perfectly without backscattering in HgTe QWs. This behavior is similar to Dirac electrons in graphene. In this paper, we propose a scheme to confine carriers in HgTe QWs using an electric–magnetic barrier. We calculate the transmission of carriers in 2-dimensional HgTe QWs and find that the wave-vector filtering effect of local magnetic fields can confine the carriers. The confining effect will have potential application in nanodevices based on HgTe QWs.
Keywords:  magnetic barrier      topological insulator      helical states      HgTe quantum well  
Received:  18 October 2012      Revised:  12 December 2012      Accepted manuscript online: 
PACS:  73.63.Hs (Quantum wells)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.23.Ad (Ballistic transport)  
  73.40.Gk (Tunneling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10821403 and 11047131), the National Basic Research Program of China (Grant No. 2009CB929100), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20101303120005).
Corresponding Authors:  Song Jun-Tao     E-mail:  juntaosong@foxmail.com

Cite this article: 

Zou Yong-Lian (邹永连), Song Jun-Tao (宋俊涛) Wave-vector filtering effect of electric–magnetic barrier in HgTe quantum wells 2013 Chin. Phys. B 22 037304

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[3] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[4] Roth A, Brüne C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L and Zhang S C 2009 Science 325 294
[5] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[6] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[7] Neto A G, Guinea F, Peres N R, Novosolov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[8] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[9] Novoselov K S, McCann E, Morozov S V, Fal'ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
[10] Martino A D, Dell'Anna L and Egger R 2007 Phys. Rev. Lett. 98 066802
[11] Silvestrov P G and Efetov K B 2007 Phys. Rev. Lett. 98 016802
[12] Ghosh S and Sharma M 2009 J. Phys.: Condens. Matter 21 292204
[13] Zhai F and Chang K 2008 Phys. Rev. B 77 113409
[14] Zhang L B, Chang K, Xie X C, Buhmann H and Molenkamp L W 2010 New J. Phys. 12 083058
[15] Zhang L B, Zhai F and Chang K 2010 Phys. Rev. B 81 235323
[16] Molenkamp L W, Staring A M, Beenakker C W, Eppenga R, Timmering C E, Williamson J G, Harmans C J and Foxon C T 1990 Phys. Rev. B 41 1274
[17] Masir M R, Vasilopoulos P and Peeters F M 2008 Appl. Phys. Lett. 93 242103
[18] Masir M R, Vasilopoulos P, Matulis A and Peeters F M 2008 Phys. Rev. B 77 235443
[19] Xu H Q 1994 Phys. Rev. B 50 8469
[20] Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press)
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[3] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[4] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[5] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[6] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[7] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[8] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[9] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[10] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[11] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[12] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[13] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[14] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[15] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
No Suggested Reading articles found!