Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 036401    DOI: 10.1088/1674-1056/22/3/036401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Site occupation of doping La3+ cations and phase transition in Na0.5Bi0.5TiO3–BaTiO3 solid solution

Liu Li-Ying (刘立英)a, Wang Ru-Zhi (王如志)b, Zhu Man-Kang (朱满康)b, Hou Yu-Dong(侯育冬)b
a School of Applied Mathematics and Physics, Beijing University of Technology, Beijing 100124, China;
b College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Abstract  Effects of La doping on the ferroelectric properties of 0.92Na0.5Bi0.5TiO3–0.08BaTiO3 (NBT–BT) solid solution have been studied both experimentally and theoretically. The experimental results show that an abnormal ferro-to-antiferroelectric phase transition is induced by La doping in NBT–BT. The first-principles calculations indicate that La3+ cations selectively substitute for the A site in NBT–BT as donors. Furthermore, the computed binding energy reveals that La cations is most likely to substitute for Ba2+ or Na+ to Bi3+ at A site as donors in NBT–BT, as supported by our Raman spectra. The ferro-to-antiferroelectric phase transition of La-doped NBT–BT is believed to originate from the lattice aberrance and redistribution of valence electrons, thus strengthening the bonding of A–O, enhancing the hybridization between the A cation d orbital and O 2p orbital, and resulting in the deflection of the polar direction of NBT–BT lattice.
Keywords:  Na0.5Bi0.5TiO3      first principles      occupation selectivity      phase transition  
Received:  26 June 2012      Revised:  24 August 2012      Accepted manuscript online: 
PACS:  64.60.Ej (Studies/theory of phase transitions of specific substances)  
  71.20.Ps (Other inorganic compounds)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51202007, 11274029, 11074017, 51072008, and 51172006).
Corresponding Authors:  Wang Ru-Zhi     E-mail:  wrz@bjut.edu.cn

Cite this article: 

Liu Li-Ying (刘立英), Wang Ru-Zhi (王如志), Zhu Man-Kang (朱满康), Hou Yu-Dong (侯育冬) Site occupation of doping La3+ cations and phase transition in Na0.5Bi0.5TiO3–BaTiO3 solid solution 2013 Chin. Phys. B 22 036401

[1] Fan J, Dong X W, Song Y, Wang F K, Liu J M and Jiang X P 2011 Chin. Phys. B 20 027502
[2] Liu L Y, Zhu M K, Hou Y D, Yan H and Liu R P 2007 J. Mater. Res. 22 1188
[3] Zheng Q, Xu C, Lin D, Gao D and Kwok K W 2008 J. Phys. D: Appl. Phys. 41 125411
[4] Yasuda N, Ohwa H, Oohashi J, Nomura K, Terauchi H, Iwata M and Ishibashi Y 1998 J. Phys. Soc. Jpn. 67 3952
[5] Choi S Y, Chung S Y, Yamamoto T and Ikuhara Y 2008 Adv. Mater. 20 1
[6] Zhu M K, Liu L Y, Hou Y D, Wang H and Yan H 2007 J. Am. Ceram. Soc. 90 120
[7] Lin D, Kwok K W and Chan H L W 2007 Appl. Phys. Lett. 90 232903
[8] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter. 14 2717
[9] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Zeitschrift fuer Kristallographie 220 567
[10] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[11] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[12] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[13] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[14] Bellaiche L, García A and Vanderbilt D 2000 Phys. Rev. Lett. 84 5427
[15] Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877
[16] Haumont R, Al-Barakaty A, Dkhil B, Kiat J M and Bellaiche L 2005 Phys. Rev. B 71 104106
[17] Geneste G, Kiat J M and Malibert C 2008 Phys. Rev. B 77 052106
[18] Lee J H, Waghmare U V and Yu J 2008 J. Appl. Phys. 103 124106
[19] Elkechai O, Manier M and Mercurio J P 1996 Phys. Status Solidi A 157 499
[20] Kreisel J, Glazer A M, Bouvier P and Lucazeau G 2001 Phys. Rev. B 63 174106
[21] Kagimura R, Suewattana M and Singh D J 2008 Phys. Rev. B 78 012103
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!