|
|
Three-dimensional Bose–Einstein condensate vortex soliton sunder optical lattice and harmonic confinements |
Wang Ying (王莹), Zong Feng-De (宗丰德), Li Feng-Bo (李峰波) |
Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract We predict three-dimensional vortex solitons in a Bose–Einstein condensate under a complex potential which is the combination of a two-dimensional parabolic trap along the transverse radial direction and a one-dimensional optical-lattice potential along the z axis direction. The vortex solitons are built in the form of layer-chain structure made up of several fundamental vortices along the optical-lattice direction, which were not reported before in the three-dimensional Bose–Einstein condensate. By using the combination of the energy density functional method with the direct numerical simulation, we find three-dimensional vortex solitons with topological charge χ=1, χ=2, and χ=3. Moreover, the macroscopic quantum tunneling and the chirp phenomena of the vortex solitons are shown in the evolution. Thereinto, the occurrence of the macroscopic quantum tunneling provides a possibility for the realization of the quantum tunneling in experiment. Specifically, we manipulate the vortex solitons along the optical lattice direction successfully. The stability limits for dragging the vortex solitons from an initial fixed position to a prescribed location are further pursued.
|
Received: 06 July 2012
Revised: 06 September 2012
Accepted manuscript online:
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
05.45.Yv
|
(Solitons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10672147 and 11072219) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y1080959). |
Corresponding Authors:
Zong Feng-De
E-mail: fdzong@zjnu.cn
|
Cite this article:
Wang Ying (王莹), Zong Feng-De (宗丰德), Li Feng-Bo (李峰波) Three-dimensional Bose–Einstein condensate vortex soliton sunder optical lattice and harmonic confinements 2013 Chin. Phys. B 22 030315
|
[1] |
Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
|
[2] |
Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clment D, Sanchez P L, Bouyer P and Aspect A 2008 Nature 453 891
|
[3] |
Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
|
[4] |
Baizakov B B, Malomed B A and Salerno M 2004 Phys. Rev. A 70 053614
|
[5] |
Cataliotti F S, Burger S, Fort C, Maddaloni P, Minardi F, Trombettoni A, Smerzi A and Inguscio M 2001 Science 293 843
|
[6] |
Mihalache D, Mazilu D, Lederer F, Kartashov Y V, Crasovan L C and Torner L 2004 Phys. Rev. E 70 055603
|
[7] |
Leblond H, Malomed B A and Mihalache D 2007 Phys. Rev. E 76 026604
|
[8] |
Matuszewski M, Infeld E, Malomed B A and Trippenbach M 2005 Phys. Rev. Lett. 95 050403
|
[9] |
Efremidis N K and Christodoulides D N 2003 Phys. Rev. A 67 063608
|
[10] |
Zhang R, Sapiro R E, Mhaskar R R and Raithel G 2008 Phys. Rev. A 78 053607
|
[11] |
Alexander T J, Heenan K, Salerno M and Ostrovskaya E A 2012 Phys. Rev. A 85 063626
|
[12] |
Etienne W, Timoléon C K and Alidou M 2012 Chin. Phys. B 21 070504
|
[13] |
Wu L, Li L, Zhang J F, Mihalache D, Malomed Boris A and Liu W M 2010 Phys. Rev. A 81 061805
|
[14] |
Volodymyr L M 2008 Phys. Rev. A 78 033603
|
[15] |
Sakaguchi H and Malomed B A 2005 Europhys. Lett. 72 698
|
[16] |
Kartashov Y V, Vysloukh V A and Torner L 2005 Phys. Rev. Lett. 94 043902
|
[17] |
Baizakov B B, Malomed B A and Salerno M 2003 Europhys. Lett. 63 642
|
[18] |
Neshev D N, Alexander T J, Ostrovskaya E A, Kivshar Y S, Martin H, Makasyuk I and Chen Z 2004 Phys. Rev. Lett. 92 123903
|
[19] |
Tristram J A, Elena A O, Andrey A S and Yuri S K 2005 Phys. Rev. A 72 043603
|
[20] |
Hu J H, Wang J J, Gao X L, Okumura M, Igarashi R, Yamada S and Machida M 2010 Phys. Rev. B 82 014202
|
[21] |
Gao X l, Polini M, Tosi M P, Vivaldo L, Campo J, Capelle K and Rigol M 2006 Phys. Rev. B 73 165120
|
[22] |
Baym G and Pethick C J 2004 Phys. Rev. A 69 043619
|
[23] |
Muruganandam P and Adhikari S K 2009 Comput. Phys. Commun. 180 1888
|
[24] |
Muruganandam P and Adhikari S K 2003 J. Phys. B: At. Mol. Opt. Phys. 36 2501
|
[25] |
Watanabe G and Pethick C J 2007 Phys. Rev. A 76 021605
|
[26] |
Cazalilla M A, Iucci A and Giamarchi T 2007 Phys. Rev. A 75 051603
|
[27] |
Fialko O, Bradley A S and Brand J 2012 Phys. Rev. Lett. 108 015301
|
[28] |
Gross E P 1963 J. Math. Phys. 4 195
|
[29] |
Gross E P 1961 Nuovo Cimento 20 454
|
[30] |
Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
|
[31] |
Adhikari S K 2010 Phys. Rev. A 81 043636
|
[32] |
Xu Z J, Shi J Q and Lin G C 2007 Acta Phys. Sin. 56 0666 (in Chinese)
|
[33] |
Tikhonenkov I, Malomed B A and Vardi A 2008 Phys. Rev. A 78 043614
|
[34] |
Robinson J and Rahmat-Samii Y 2004 IEEE Transactions on Antennas and Propagation 52 397
|
[35] |
Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
|
[36] |
Ye M, Wang X and Xu Y 2009 J. Appl. Phys. 105 094502
|
[37] |
Dalfovo F and Stringari S 1996 Phys. Rev. A 53 2477
|
[38] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[39] |
Abdullaev F K, Baizakov B B and Salerno M 2003 Phys. Rev. E 68 066605
|
[40] |
Wang D S, Hu X H and Liu W M 2010 Phys. Rev. A 82 023612
|
[41] |
Anderson B P and Kasevich M A 1998 Science 282 1686
|
[42] |
Wang Y M and Liang J Q 2012 Chin. Phys. B 21 060305
|
[43] |
Theocharis G, Frantzeskakis D J, Carretero-González R, Kevrekidis P G and Malomed B A 2005 Phys. Rev. E 71 017602
|
[44] |
Song C S, Li J and Zong F D 2012 Chin. Phys. B 21 020306
|
[45] |
Kevrekidis P G, Frantzeskakis D J and Carretero-González R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment (New York: Springer-Verlag) Vol. 14 pp. 267-271
|
[46] |
Nistazakis H E, Kevrekidis P G, Malomed B A, Frantzeskakis D J and Bishop A R 2002 Phys.Rev. E 66 015601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|