Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044302    DOI: 10.1088/1674-1056/abca1f

Weak-focused acoustic vortex generated by a focused ring array of planar transducers and its application in large-scale rotational object manipulation

Yuzhi Li(李禹志)1, Peixia Li(李培霞)1, Ning Ding(丁宁)1, Gepu Guo(郭各朴)1, Qingyu Ma(马青玉)1,†, Juan Tu(屠娟)2, and Dong Zhang(章东)2
1 School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China; 2 Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  Contactless manipulation of multi-scale objects using the acoustic vortex (AV) tweezers offers tremendous perspectives in biomedical applications. However, it is still hindered by the weak acoustic radiation force (ARF) and torque (ART) around the vortex center. By introducing the elevation angle to the planar transducers of an N-element ring array, the weak-focused acoustic vortex (WFAV) composed of a main-AV and N paraxial-AVs is constructed to conduct a large-scale object manipulation. Different from the traditional focused AV (FAV) generated by a ring array of concave spherical transducers, a much larger focal region of the WFAV is generated by the main lobes of the planar transducers with the size inversely associated with the elevation angle. With the pressure simulation of the acoustic field, the capability of the rotational object driving in the focal plane for the WFAV is analyzed using the ARF and the ART exerted on an elastic ball based on acoustic scattering. With the experimental system built in water, the generation of the WFAV is verified by the scanning measurements of the acoustic field and the capability of object manipulation is also analyzed by the rotational trapping of floating particles in the focal plane. The favorable results demonstrate the feasibility of large-scale rotational manipulation of objects with a strengthened ART and a reduced acousto-thermal damage to biological tissues, showing a promising prospect for potential applications in clinical practice.
Keywords:  acoustic vortex      weak-focused      large-scale object manipulation      acoustic scatter      acoustic radiation force  
Received:  14 October 2020      Revised:  05 November 2020      Accepted manuscript online:  13 November 2020
PACS:  43.25.Qp (Radiation pressure?)  
  43.60.Fg (Acoustic array systems and processing, beam-forming)  
  43.38.Hz (Transducer arrays, acoustic interaction effects in arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934009, 11974187, and 12004187) and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20161013 and BK20200724).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Yuzhi Li(李禹志), Peixia Li(李培霞), Ning Ding(丁宁), Gepu Guo(郭各朴), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东) Weak-focused acoustic vortex generated by a focused ring array of planar transducers and its application in large-scale rotational object manipulation 2021 Chin. Phys. B 30 044302

1 Hefner B T and Marston P L 1999 J. Acoust. Soc. Am. 106 3313
2 Thomas J L and Marchiano R 2003 Phys. Rev. Lett. 91 244302
3 Marchiano R and Thomas J L 2005 Phys. Rev. E 71 066616
4 Lekner J 2006 J. Acoust. Soc. Am. 120 3475
5 Marchiano R 2008 Phys. Rev. E 77 016605
6 Lee C, Jeong J S, Hwang J Y, Lee J and Shung K K 2014 Appl. Phys. Lett. 104 244107
7 Ashkin A, Dziedzic J M and Yamane T 1987 Nature 330 769
8 Ashkin A and Dziedzic J M 1989 Proc. Nadl. Acad. Sci. USA 86 7914
9 Li Y, Lee C, Chen R, Zhou Q and Shung K K 2014 Appl. Phys. Lett. 105 173701
10 Chen K, Wu M, Guo F, Li P, Chan C, Mao Z, Li S, Ren L, Zhang R and Huang T J 2016 Lab. Chip 16 2636
11 Riaud A, Baudoin M, Matar O B, Becerra L and Thomas J L 2017 Phys. Rev. Appl. 7 024007
12 Kang S T and Yeh C K 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 57 1451
13 Baresch D, Thomas J L and Marchiano R 2013 J. Appl. Phys. 113 184901
14 Skeldon K D, Wilson C, Edgar M and Padgett M J 2008 New J. Phys. 10 013018
15 Courtney C R P, Demore C E M, Wu H, Grinenko A, Wilcox P D, Cochran S and Drinkwater B W 2014 Appl. Phys. Lett. 104 154103
16 Marston P L 2007 J. Acoust. Soc. Am. 122 3162
17 Zhang L and Marston P L 2011 Phys. Rev. E 84 065601
18 Volke-Sepulveda K, Santillàn A O and Boullosa R R 2008 Phys. Rev. Lett. 100 024302
19 Santillàn A O and Volke-Sepulveda K 2009 Am. J. Phys. 77 209
20 Yang L, Ma Q, Tu J and Zhang D 2013 J. Appl. Phys. 113 154904
21 Zheng H, Gao L, Ma Q, Dai Y and Zhang D 2014 J. Appl. Phys. 115 084909
22 Gao L, Zheng H, Ma Q, Tu J and Zhang D 2014 J. Appl. Phys. 116 024905
23 Marzo A, Seah S A, Drinkwater B W, Sahoo D R, Long B and Subramanian S 2015 Nat. Commun. 6 8661
24 Marzo A, Caleap M and Drinkwater B W 2018 Phys. Rev. Lett. 120 044301
25 Li Y, Guo G, Ma Q, Tu J and Zhang D 2017 J. Appl. Phys. 121 164901
26 Pazos-Ospina J F, Quiceno F, Ealo J L, Muelas R D and Camacho J 2015 Phys. Procedia 70 183
27 Baresch D, Thomas J L and Marchiano R 2016 Phys. Rev. Lett. 116 024301
28 Baresch D, Thomas J L and Marchiano R 2018 Phys. Rev. Lett. 121 074301
29 Baudoin M, Gerbedoen J C, Riaud A, Matar O B, Smagin N and Thomas J L 2019 Sci. Adv. 5 eaav1967
30 Li Y, Guo G, Tu J, Ma Q, Guo X, Zhang D and Sapozhnikov O A 2018 Appl. Phys. Lett. 112 254101
31 Cheng J2011 Principles of Acoustics (Beijing: Science Express) pp. 247-270
32 Lee C P and Wang T G 1993 J. Acoust. Soc. Am. 93 1637
33 Silva G T, Chen S, Greenleaf J F and Fatemi M 2005 Phys. Rev. E 71 056617
34 Zhang P, Li T, Zhu J, Zhu X, Yang S, Wang Y, Yin X and Zhang X 2014 Nat. Commun. 5 4316
35 Kido T, Hasegawa T and Okamura N 2004 Acoust. Sci. Technol. 25 439
36 Sapozhnikov O A and Bailey M R 2013 J. Acoust. Soc. Am. 133 661
37 Ghanem M A, Maxwell A D, Sapozhnikov O A, Khokhlova V A and Bailey M R 2019 Phys. Rev. Appl. 12 044076
38 Wang Q, Li Y, Ma Q, Guo G, Tu J and Zhang D 2018 J. Appl. Phys. 123 034901
39 Li Y, Tao C, Ma Q, Guo G, Zhang D and Hu J 2018 J. Appl. Phys. 124 214905
40 Marston P L 2007 J. Acoust. Soc. Am. 122 3162
41 Mitri F G 2009 J. Phys. A Math. Theor. 42 245202
42 Li Y, Ma Q, Guo G, Tu J and Zhang D 2020 Chin. Phys. B 29 054302
43 Marzo A and Drinkwater B W 2019 Proc. Nadl. Acad. Sci. USA 116 84
44 Silva G T and Baggio A L 2015 Ultrason. 56 449
45 Melde K, Mark A G, Qiu T and Fischer P 2016 Nature 537 518
46 Meng L, Cai F, Li F, Zhou W, Niu L and Zheng H 2019 J. Phys. D: Appl. Phys. 52 273001
[1] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[2] Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam
Yu-Chen Zang(臧雨宸), Wei-Jun Lin(林伟军), Chang Su(苏畅), and Peng-Fei Wu(吴鹏飞). Chin. Phys. B, 2021, 30(4): 044301.
[3] Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(5): 054302.
[4] Acoustic radiation force and torque on a lossless eccentric layered fluid cylinder
F G Mitri. Chin. Phys. B, 2020, 29(11): 114302.
[5] Measuring orbital angular momentum of acoustic vortices based on Fraunhofer’s diffraction
Chao-Fan Gong(龚超凡), Jing-Jing Li(李晶晶), Kai Guo(郭凯), Hong-Ping Zhou(周红平)†, and Zhong-Yi Guo(郭忠义)‡. Chin. Phys. B, 2020, 29(10): 104301.
[6] Axial acoustic radiation force on a fluid sphere between two impedance boundaries for Gaussian beam
Yuchen Zang(臧雨宸), Yupei Qiao(乔玉配), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(3): 034301.
[7] Acoustic radiation force on a multilayered sphere in a Gaussian standing field
Haibin Wang(汪海宾), Xiaozhou Liu(刘晓宙), Sha Gao(高莎), Jun Cui(崔骏), Jiehui Liu(刘杰惠), Aijun He(何爱军), Gutian Zhang(张古田). Chin. Phys. B, 2018, 27(3): 034302.
[8] Multiple off-axis acoustic vortices generated by dual coaxial vortex beams
Wen Li(李雯), Si-Jie Dai(戴思捷), Qing-Yu Ma(马青玉), Ge-Pu Guo(郭各朴), He-Ping Ding(丁鹤平). Chin. Phys. B, 2018, 27(2): 024301.
[9] Acoustic radiation force induced by two Airy-Gaussian beams on a cylindrical particle
Sha Gao(高莎), Yiwei Mao(毛一葳), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2018, 27(1): 014302.
[10] Acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials
Li Li (李黎), Wen Ji-Hong (温激鸿), Cai Li (蔡力), Zhao Hong-Gang (赵宏刚), Wen Xi-Sen (温熙森). Chin. Phys. B, 2013, 22(1): 014301.
[11] Finite element modeling of acoustic scattering from an encapsulated microbubble near rigid boundary
Huang Bei(黄蓓), Zhang Yan-Li(张艳丽), Zhang Dong(章东), and Gong Xiu-Fen(龚秀芬). Chin. Phys. B, 2010, 19(5): 054302.
No Suggested Reading articles found!