ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Weak-focused acoustic vortex generated by a focused ring array of planar transducers and its application in large-scale rotational object manipulation |
Yuzhi Li(李禹志)1, Peixia Li(李培霞)1, Ning Ding(丁宁)1, Gepu Guo(郭各朴)1, Qingyu Ma(马青玉)1,†, Juan Tu(屠娟)2, and Dong Zhang(章东)2 |
1 School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China; 2 Institute of Acoustics, Nanjing University, Nanjing 210093, China |
|
|
Abstract Contactless manipulation of multi-scale objects using the acoustic vortex (AV) tweezers offers tremendous perspectives in biomedical applications. However, it is still hindered by the weak acoustic radiation force (ARF) and torque (ART) around the vortex center. By introducing the elevation angle to the planar transducers of an N-element ring array, the weak-focused acoustic vortex (WFAV) composed of a main-AV and N paraxial-AVs is constructed to conduct a large-scale object manipulation. Different from the traditional focused AV (FAV) generated by a ring array of concave spherical transducers, a much larger focal region of the WFAV is generated by the main lobes of the planar transducers with the size inversely associated with the elevation angle. With the pressure simulation of the acoustic field, the capability of the rotational object driving in the focal plane for the WFAV is analyzed using the ARF and the ART exerted on an elastic ball based on acoustic scattering. With the experimental system built in water, the generation of the WFAV is verified by the scanning measurements of the acoustic field and the capability of object manipulation is also analyzed by the rotational trapping of floating particles in the focal plane. The favorable results demonstrate the feasibility of large-scale rotational manipulation of objects with a strengthened ART and a reduced acousto-thermal damage to biological tissues, showing a promising prospect for potential applications in clinical practice.
|
Received: 14 October 2020
Revised: 05 November 2020
Accepted manuscript online: 13 November 2020
|
PACS:
|
43.25.Qp
|
(Radiation pressure?)
|
|
43.60.Fg
|
(Acoustic array systems and processing, beam-forming)
|
|
43.38.Hz
|
(Transducer arrays, acoustic interaction effects in arrays)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934009, 11974187, and 12004187) and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20161013 and BK20200724). |
Corresponding Authors:
†Corresponding author. E-mail: maqingyu@njnu.edu.cn
|
Cite this article:
Yuzhi Li(李禹志), Peixia Li(李培霞), Ning Ding(丁宁), Gepu Guo(郭各朴), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东) Weak-focused acoustic vortex generated by a focused ring array of planar transducers and its application in large-scale rotational object manipulation 2021 Chin. Phys. B 30 044302
|
1 Hefner B T and Marston P L 1999 J. Acoust. Soc. Am. 106 3313 2 Thomas J L and Marchiano R 2003 Phys. Rev. Lett. 91 244302 3 Marchiano R and Thomas J L 2005 Phys. Rev. E 71 066616 4 Lekner J 2006 J. Acoust. Soc. Am. 120 3475 5 Marchiano R 2008 Phys. Rev. E 77 016605 6 Lee C, Jeong J S, Hwang J Y, Lee J and Shung K K 2014 Appl. Phys. Lett. 104 244107 7 Ashkin A, Dziedzic J M and Yamane T 1987 Nature 330 769 8 Ashkin A and Dziedzic J M 1989 Proc. Nadl. Acad. Sci. USA 86 7914 9 Li Y, Lee C, Chen R, Zhou Q and Shung K K 2014 Appl. Phys. Lett. 105 173701 10 Chen K, Wu M, Guo F, Li P, Chan C, Mao Z, Li S, Ren L, Zhang R and Huang T J 2016 Lab. Chip 16 2636 11 Riaud A, Baudoin M, Matar O B, Becerra L and Thomas J L 2017 Phys. Rev. Appl. 7 024007 12 Kang S T and Yeh C K 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 57 1451 13 Baresch D, Thomas J L and Marchiano R 2013 J. Appl. Phys. 113 184901 14 Skeldon K D, Wilson C, Edgar M and Padgett M J 2008 New J. Phys. 10 013018 15 Courtney C R P, Demore C E M, Wu H, Grinenko A, Wilcox P D, Cochran S and Drinkwater B W 2014 Appl. Phys. Lett. 104 154103 16 Marston P L 2007 J. Acoust. Soc. Am. 122 3162 17 Zhang L and Marston P L 2011 Phys. Rev. E 84 065601 18 Volke-Sepulveda K, Santillàn A O and Boullosa R R 2008 Phys. Rev. Lett. 100 024302 19 Santillàn A O and Volke-Sepulveda K 2009 Am. J. Phys. 77 209 20 Yang L, Ma Q, Tu J and Zhang D 2013 J. Appl. Phys. 113 154904 21 Zheng H, Gao L, Ma Q, Dai Y and Zhang D 2014 J. Appl. Phys. 115 084909 22 Gao L, Zheng H, Ma Q, Tu J and Zhang D 2014 J. Appl. Phys. 116 024905 23 Marzo A, Seah S A, Drinkwater B W, Sahoo D R, Long B and Subramanian S 2015 Nat. Commun. 6 8661 24 Marzo A, Caleap M and Drinkwater B W 2018 Phys. Rev. Lett. 120 044301 25 Li Y, Guo G, Ma Q, Tu J and Zhang D 2017 J. Appl. Phys. 121 164901 26 Pazos-Ospina J F, Quiceno F, Ealo J L, Muelas R D and Camacho J 2015 Phys. Procedia 70 183 27 Baresch D, Thomas J L and Marchiano R 2016 Phys. Rev. Lett. 116 024301 28 Baresch D, Thomas J L and Marchiano R 2018 Phys. Rev. Lett. 121 074301 29 Baudoin M, Gerbedoen J C, Riaud A, Matar O B, Smagin N and Thomas J L 2019 Sci. Adv. 5 eaav1967 30 Li Y, Guo G, Tu J, Ma Q, Guo X, Zhang D and Sapozhnikov O A 2018 Appl. Phys. Lett. 112 254101 31 Cheng J2011 Principles of Acoustics (Beijing: Science Express) pp. 247-270 32 Lee C P and Wang T G 1993 J. Acoust. Soc. Am. 93 1637 33 Silva G T, Chen S, Greenleaf J F and Fatemi M 2005 Phys. Rev. E 71 056617 34 Zhang P, Li T, Zhu J, Zhu X, Yang S, Wang Y, Yin X and Zhang X 2014 Nat. Commun. 5 4316 35 Kido T, Hasegawa T and Okamura N 2004 Acoust. Sci. Technol. 25 439 36 Sapozhnikov O A and Bailey M R 2013 J. Acoust. Soc. Am. 133 661 37 Ghanem M A, Maxwell A D, Sapozhnikov O A, Khokhlova V A and Bailey M R 2019 Phys. Rev. Appl. 12 044076 38 Wang Q, Li Y, Ma Q, Guo G, Tu J and Zhang D 2018 J. Appl. Phys. 123 034901 39 Li Y, Tao C, Ma Q, Guo G, Zhang D and Hu J 2018 J. Appl. Phys. 124 214905 40 Marston P L 2007 J. Acoust. Soc. Am. 122 3162 41 Mitri F G 2009 J. Phys. A Math. Theor. 42 245202 42 Li Y, Ma Q, Guo G, Tu J and Zhang D 2020 Chin. Phys. B 29 054302 43 Marzo A and Drinkwater B W 2019 Proc. Nadl. Acad. Sci. USA 116 84 44 Silva G T and Baggio A L 2015 Ultrason. 56 449 45 Melde K, Mark A G, Qiu T and Fischer P 2016 Nature 537 518 46 Meng L, Cai F, Li F, Zhou W, Niu L and Zheng H 2019 J. Phys. D: Appl. Phys. 52 273001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|