Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030308    DOI: 10.1088/1674-1056/22/3/030308
GENERAL Prev   Next  

Induced modification of geometric phase of a qubit coupled to an XY spin chain by the Dzyaloshinsky–Moriya interaction

Zhang Ai-Ping (张爱萍)a b c, Li Fu-Li (李福利)a b
a Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter of Ministry of Education,Xi'an Jiaotong University, Xi'an 710049, China;
b Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China;
c Department of Physics, Xi'an University of Architecture and Technology, Xi'an 710055, China
Abstract  We consider a qubit symmetrically and transversely coupled to an XY spin chain with Dzyaloshinsky–Moriya (DM) interaction in the presence of a transverse magnetic field. An analytical expression for the geometric phase of the qubit is obtained in the weak coupling limit. We find that the modification of the geometrical phase induced by the spin chain environment is greatly enhanced by the DM interaction in the weak coupling limit around the quantum phase transition point of the spin chain.
Keywords:  geometric phase      quantum phase transition      XY spin chain      Dzyaloshinsky–Moriya interaction  
Received:  11 July 2012      Revised:  16 August 2012      Accepted manuscript online: 
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  75.10.Pq (Spin chain models)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923102), the Special Prophase Project on the National Basic Research Program of China (Grant No. 2011CB311807), and the National Natural Science Foundation of China (Grant No. 11074199).
Corresponding Authors:  Zhang Ai-Ping     E-mail:  apzhang163@163.com

Cite this article: 

Zhang Ai-Ping (张爱萍), Li Fu-Li (李福利) Induced modification of geometric phase of a qubit coupled to an XY spin chain by the Dzyaloshinsky–Moriya interaction 2013 Chin. Phys. B 22 030308

[1] Berry M V 1984 Proc. R. Soc. Lond., Ser. A 392 45
[2] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[3] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339
[4] Pati A K 1995 Phys. Rev. A 52 2576
[5] Uhlmann A 1986 Rep. Math. Phys. 24 229
[6] Uhlmann A 1991 Lett. Math. Phys. 21 229
[7] Singh K, Tong D M, Basu K, Chen J L and Du J F 2003 Phys. Rev. A 67 032106
[8] Zanardi P and Rasetti M 1999 Phys. Rev. A 264 94
[9] Zhu S L and Zanardi P 2005 Phys. Rev. A 72 020301
[10] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[11] Sachdev S 1999 Quantum Phase Transition (Cambridge: Cambridge University Press)
[12] Carollo A C M and Pachos J K 2005 Phys. Rev. Lett. 95 157203
[13] Yi X X and Wang W 2007 Phys. Rev. A 75 032103
[14] Ma Y Q and Chen S 2009 Phys. Rev. A 79 022116
[15] Nesterov A I and Ovchinnikov S G 2008 Phys. Rev. E 78 015202
[16] Zhu S L 2006 Phys. Rev. Lett. 96 077206
[17] Yuan X Z, Goan H S and Zhu K D 2010 Phys. Rev. A 81 034102
[18] Venuti L C and Zanardi P 2007 Phys. Rev. Lett. 99 095701
[19] Sjöqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedrel V 2000 Phys. Rev. Lett. 85 2845
[20] Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2003 Phys. Rev. Lett. 90 160402
[21] Tong D M, Sjöqvist E, Kwek L C and Oh C H 2004 Phys. Rev. Lett. 93 080405
[22] Lombardo F C and Villar P I 2006 Phys. Rev. A 74 042311
[23] Cuchietti F M, Zhang J F, Lombardo F C, Villar P I and Laflamme R 2010 Phys. Rev. Lett. 105 240406
[24] Dzyaloshinsky I 1958 J. Phys. Chem. Solids. 4 241
[25] Moriya T 1960 Phys. Rev. Lett. 4 228
[26] Cheng W W and Liu J M 2009 Phys. Rev. A 79 052320
[27] Li Z J, Cheng L and Wen J J 2010 Chin. Phys. B 19 010305
[28] Wang L C, Yan J Y and Yi X X 2010 Chin. Phys. B 19 040512
[29] Quan H T, Song Z and Liu X F 2007 Phys. Rev. A 75 062312
[30] Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 76 042118
[31] Nielsen M and Chuang I 2000 Qantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[3] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[4] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[5] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[6] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[7] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[8] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[9] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[10] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[11] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[12] Geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics
Da-Jian Zhang(张大剑), Qing-hai Wang(王清海), and Jiangbin Gong(龚江滨). Chin. Phys. B, 2021, 30(10): 100307.
[13] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[14] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[15] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
No Suggested Reading articles found!