Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030307    DOI: 10.1088/1674-1056/22/3/030307
GENERAL Prev   Next  

New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function

Meng Xiang-Guo (孟祥国)a, Wang Ji-Suo (王继锁)a b, Liang Bao-Long (梁宝龙)a
a Department of Physics, Liaocheng University, Liaocheng 252059, China;
b Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, College of Physics and Engineering,Qufu Normal University, Qufu 273165, China
Abstract  Using the thermal entangled state representation, we solve the master equation of a diffusive anharmonic oscillator (AHO) to obtain the exact time evolution formula for the density operator in the infinitive operator-sum representation. We present a new evolution formula of the Wigner function (WF) for any initial state of the diffusive AHO by converting the calculation of the WF to an overlap between two pure states in an enlarged Fock space. It is found that this formula brings us much convenience to investigate the WF's evolution of any known initial state. As applications, this formula is used to obtain the evolution of the WF for a coherent state and the evolution of the photon-number distribution of the diffusive AHO.
Keywords:  diffusive anharmonic oscillator      thermal entangled state representation      infinitive operator-sum representation      Wigner function  
Received:  19 June 2012      Revised:  21 August 2012      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11147009 and 11244005) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012AM004).
Corresponding Authors:  Meng Xiang-Guo     E-mail:  mengxiangguo1978@sina.com

Cite this article: 

Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙) New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function 2013 Chin. Phys. B 22 030307

[1] Landau L D and Lifschitz E M 1976 Mechanics (Oxford: Pergamon Press)
[2] Wang L M, Cai J and Qiao H X 2011 Chin. Phys. B 20 073202
[3] He L, Zhang F M, Yang Y F and Li C F 2010 Chin. Phys. B 19 040306
[4] Tanaś R, Miranowicz A and Kielich S 1991 Phys. Rev. A 43 4014
[5] Chung N N and Chew L Y 2007 Phys. Rev. A 76 032113
[6] Jentschura U D, Surzhykov A and Zinn-Justin J 2009 Phys. Rev. Lett. 102 011601
[7] Ho K C, Liu Y T, Lo C F, Liu K L, Kwok W M and Shiu M L 1996 Phys. Rev. A 53 1280
[8] Luo H G and Wang S J 2000 Phys. Rev. B 62 5341
[9] Abraham K J and Vary J P 2003 Phys. Rev. C 67 054313
[10] Núñez M A 2003 Phys. Rev. E 68 016703
[11] Claudon J, Zazunov A, Hekking F W J and Buisson O 2008 Phys. Rev. B 78 184503
[12] Peixoto de Faria J G 2007 Eur. Phys. J. D 42 153
[13] Daniel D J and Milburn G J 1989 Phys. Rev. A 39 4628
[14] Oliveira A C, Peixoto de Faria J G and Nemes M C 2006 Phys. Rev. E 73 046207
[15] Chaturvedi S and Srinivasan V 1991 Phys. Rev. A 43 4054
[16] Jiang N Q, Fan H Y and Hu L Y 2011 J. Phys A: Math. Theor. 44 195302
[17] Meng X G, Wang J S and Liang B L 2011 Chin. Phys. B 20 014204
[18] Hu L Y and Fan H Y 2009 Chin. Phys. B 18 1674
[19] Wodkiewicz K and Eberly J H 1985 J. Opt. Soc. Am. B 2 458
[20] Moya-Cessa H 2006 Phys. Rep. 432 1
[21] Hu L Y and Fan H Y 2009 Opt. Commun. 282 4379
[22] Takahashi Y and Umezawa H 1975 Collect. Phenom. 2 55
[1] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[2] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[3] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[4] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[5] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[6] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[7] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[8] Explicit solution of diffusion master equation under the action of linear resonance force via the thermal entangled state representation
Yao Fei (姚飞), Wang Ji-Suo (王继锁), Xu Tian-Niu (徐天牛). Chin. Phys. B, 2015, 24(7): 070304.
[9] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[10] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[11] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[12] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[13] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[14] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
[15] Nonclassicality of a two-variable Hermite polynomial state
Tan Guo-Bin(谭国斌), Xu Li-Juan(徐莉娟), and Ma Shan-Jun(马善钧) . Chin. Phys. B, 2012, 21(4): 044210.
No Suggested Reading articles found!