Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 023404    DOI: 10.1088/1674-1056/22/2/023404
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Momentum transfer dependence behaviors of ionization and dissociation of oxygen

Lin Mei (林梅)a, Liu Ya-Wei (刘亚伟)a, Zhong Zhi-Ping (钟志萍)b, Zhu Lin-Fan (朱林繁)a
a Hefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
b School of Physical Sciences, University of the Chinese Academy of Sciences, P. O. Box 4588, Beijing 100049, China
Abstract  The decay pathways of structured ionization region of oxygen at different momentum transfers, i.e., 0, 0.23 a.u. (atomic unit), and 0.91 a.u., are studied by measuring the ion and the scattered electron coincidently. It is found that the dipole-forbidden superexcited states of (2σu)-1(c4Σu-)npσu 3Σg-≤←X3Σg- decay into different channels according to the principal quantum number n. The broad ridge above 35 eV, which may be due to inner-valence excited states of (2σg)-1 or multiply excited states, is observed both at small and large momentum transfers, and its decay channel of O++O is dominant.
Keywords:  oxygen      superexcited states      ionization continuum      decay channel  
Received:  10 June 2012      Revised:  23 July 2012      Accepted manuscript online: 
PACS:  34.80.Gs (Molecular excitation and ionization)  
  33.80.Eh (Autoionization, photoionization, and photodetachment)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  33.20.Ni (Vacuum ultraviolet spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 10734040, 11274291, 10979040, and 11074299); the National Basic Research Program of China (Grant No. 2010CB923301); the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103402110027); and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Zhu Lin-Fan     E-mail:  lfzhu@ustc.edu.cn

Cite this article: 

Lin Mei (林梅), Liu Ya-Wei (刘亚伟), Zhong Zhi-Ping (钟志萍), Zhu Lin-Fan (朱林繁) Momentum transfer dependence behaviors of ionization and dissociation of oxygen 2013 Chin. Phys. B 22 023404

[1] Gallagher J W, Brion C E, Samson J A R and Langhoff P W 1988 J. Phys. Chem. Ref. Data 17 9
[2] Holland D M P, Shaw D A, McSweeney S M, MacDonald M A, Hopkirk A and Hayes M A 1993 Chem. Phys. 173 315
[3] Huffman R E, Larrabee J C and Tanaka Y 1964 J. Phys. Chem. 40 356
[4] Codling K and Madden R P 1965 J. Chem. Phys. 42 3935
[5] Dehmer P M and Chupka W A 1975 J. Chem. Phys. 62 4525
[6] Eland J H D and Duerr E J 1998 Chem. Phys. 229 1
[7] Akahorit T, Moriokat Y, Watanabet M, HayaishiS T, Ito K and Nakamurat M 1985 J. Phys. B 18 2219
[8] Nishitani E, Tanaka I, Tanaka K, Kato T and Koyano I 1984 J. Chem. Phys. 81 3429
[9] Hayaishii T, Iidat Y, Morioka O Y, Sasanumall M, Ishiguro E and Nakamura M 1986 J. Phys. B 19 2861
[10] Ellis K, Hall R I, Avaldi L, Dawber G, McConkey A, Andric L and King G C 1994 J. Phys. B 27 3415
[11] Hao Y S, Zhou C and Mo Y X 2005 J. Phys. Chem. A 109 5832
[12] Baltzer P, Wannberg B, Karlsson L, Gothe M C and Larsson M 1992 Phys. Rev. A 45 4374
[13] Liebel H, Muller-Albrecht R, Lauer S, Vollweiler F, Ehresmann A and Schmoranzer H 2001 J. Phys. B 34 2581
[14] Ehresmann A, Liebel H, Schmoranzer H, Wilhelmi O, Zimmermann B and Schartner K H 2004 J. Phys. B 37 389
[15] Liebel H, Ehresmann A, Schmoranzer H, Demekhin P V, Lagutin B M and Sukhorukov V L 2002 J. Phys. B 35 895
[16] Ukai M, Machida S, Kameta K, Kitajima M, Kouchi N, Hatano Y and Ito K 1995 Phys. Rev. Lett. 74 239
[17] Tang X F, Zhou X G, Niu M L, Liu S L and Sheng L S 2011 J. Phys. Chem. A 115 6339
[18] Brion C E and Tan K H 1979 J. Electron. Spectrosc. Relat. Phenom. 17 101
[19] Fan L L, Zhong Z P, Zhu L F, Liu X J, Yuan Z S, Sun J M and Xu K Z 2005 Phys. Rev. A 71 032704
[20] Dillon M A and Spence D 1981 J. Chem. Phys. 74 6070
[21] Lee J S 1977 J. Chem. Phys. 67 3998
[22] Dittman P M, Dill D and Dehmer J L 1982 J. Chem. Phys. 76 5703
[23] Braunstein M and McKoy V 1988 J. Chem. Phys. 90 3931
[24] Braunstein M and McKoy V 1989 J. Chem. Phys. 91 150
[25] Stratmann R E and Lucchese R R 1995 J. Chem. Phys. 102 8493
[26] Lin P and Lucchese R R 2002 J. Chem. Phys. 116 8863
[27] Wu S L, Zhong Z P, Feng R F, Xing S L, Yang B X and Xu K Z 1995 Phys. Rev. A 51 4494
[28] Liu X J, Zhu L F, Jiang X M, Yuan Z S and Cai B 2001 Rev. Sci. Instrum. 72 3357
[29] Inokuti M 1971 Rev. Mod. Phys. 43 297
[30] Krupenie P H 1972 J. Phys. Chem. Ref. Data 1 423
[31] Gao X, Zhang W H, Mo Y X and Li J M 2010 Phys. Rev. A 82 031401
[32] Zhang W H, He C L, Hao Y S, Mo Y X and Li J M 2007 Chin. Phys. Lett. 24 1220
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[4] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[5] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[6] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
[7] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[8] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[9] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[10] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚). Chin. Phys. B, 2022, 31(12): 128108.
[11] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[12] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[13] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[14] Low temperature ferromagnetism in CaCu3Ti4O12
Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙). Chin. Phys. B, 2021, 30(9): 098103.
[15] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
No Suggested Reading articles found!