Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 023403    DOI: 10.1088/1674-1056/22/2/023403
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Total cross sections for electron scattering from sulfur compounds

Tan Xiao-Ming (谭晓明)a, Wang Yan-Wen (王艳文)b
a School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China;
b Department of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
Abstract  The original additivity rule method cannot give good results for electron scattering from SO, SO2, SO2Cl2, SO2ClF, and SO2F2 molecules at low energy, because the electron-molecule scattering is simply reduced to electron-atom scattering. Considering the difference between the bound atom in a molecule and the corresponding free atom, the original additivity rule is revised. With the revised additivity rule, the total cross sections for electron scattering from these molecules are calculated over a wide energy range below 3000 eV and compared with the available experimental and theoretical data. Their better agreement with each other is obtained.
Keywords:  the revised additivity rule      total cross sections      electron scattering  
Received:  12 April 2012      Revised:  23 September 2012      Accepted manuscript online: 
PACS:  34.80.Bm (Elastic scattering)  
  34.80.-i (Electron and positron scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11204121); the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011AL021); the National Natural Science Foundation of China (Grant No. 11074104); and the Discipline Construction Fund of Ludong University, China.
Corresponding Authors:  Tan Xiao-Ming     E-mail:  scu_txm@163.com

Cite this article: 

Tan Xiao-Ming (谭晓明), Wang Yan-Wen (王艳文) Total cross sections for electron scattering from sulfur compounds 2013 Chin. Phys. B 22 023403

[1] Cheng Y J, Zhou Y J and Jiao L G 2012 Chin. Phys. B 21 013405
[2] Kothari H N and Joshipura K N 2010 Chin. Phys. B 19 103402
[3] Wang X L, Feng H, Sun W G, Fan Q C, Wang B and Zeng Y Y 2011 Acta Phys. Sin. 60 023401 (in Chinese)
[4] Joshipura K N and Gangopadhyay S 2008 J. Phys. B 41 215205
[5] Tarnovski V, Levin A, Deutsch H and Becker K 1995 J. Chem. Phys. 102 770
[6] Zecca Z, Nogueira J C, Karwasz G P and Brusa R S 1995 J. Phys. B 28 477
[7] Boyle T J, Andrews N L, Alam T M, Tallant D R, Rodrigues M A and Ingersoll D 2005 Inorg. Chem. 44 5934
[8] Yu G, Mason H J, Wu X, Endo M, Douglas J and Macor J E 2001 Tetrahedron Lett. 42 3247
[9] Alonso M and Riera A 2005 Tetrahedron: Asymmetry 16 3908
[10] Demore W B, Leu M T, Smith R H and Yung Y L 1985 Icarus 63 347
[11] Turban G and Rapeaux M 1983 J. Electrochem. Soc. 130 2231
[12] Manenschijn A, Janssen G C A M, Drift E V D and Radelaz S 1989 J. Appl. Phys. 65 3226
[13] Szmytkowski C and Maciag K 1986 Chem. Phys. Lett. 124 463
[14] Szmytkowski C, Mozejko P and Krzysztofowicz A 2003 Rad. Phys. Chem. 68 307
[15] Szmytkowski C, Mozejko P, Kwitnewski S, Domaracka A and Denga E P 2006 J. Phys. B 39 2571
[16] Szmytkowski C, Mozejko P, Kwitnewski S, Denga E P and Domaracka A 2005 J. Phys. B 38 2945
[17] Wan H X, Moore J H, Olthoff J K and Van Brunt R J 1993 Plasma Chem. Plasma Process 13 1
[18] Otvos J W and Stevenson D P 1956 J. Am. Chem. Soc. 78 546
[19] Raj D 1991 Phys. Lett. A 160 571
[20] Joshipura K N and Patel P M 1994 Z. Phys. D 29 269
[21] Tan X M, Liu Z J and Tian X H 2010 Nucl. Instrum. Methods B 268 1535
[22] Tan X M and Zhao G 2012 Chin. Phys. B 21 063402
[23] Clementi E and Roetti C 1974 Atom. Data Nucl. Data Tables 14 177
[24] Riley M E and Truhlar D G 1975 J. Chem. Phys. 63 2182
[25] Zhang X Z, Sun J F and Liu Y F 1992 J. Phys. B 25 1893
[26] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[27] Jiang Y H, Sun J F and Wan L D 1994 Chin. J. At. Mol. Phys. 11 418 (in Chinese)
[28] Christophorou L G and Olthoff J K 2004 Fundamental Electron Interactions with Plasma Processing Gases (New York: Kluwer/Plenum)
[1] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[2] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[3] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[4] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
[5] Relativistic electron scattering from freely movable proton/μ+ in the presence of strong laser field
Ningyue Wang(王宁月), Liguang Jiao(焦利光), Aihua Liu(刘爱华). Chin. Phys. B, 2019, 28(9): 093402.
[6] Selection rules for electric multipole transition of triatomic molecule in scattering experiments
Hong-Chun Tian(田红春), Long-Quan Xu(徐龙泉), Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2018, 27(4): 043101.
[7] Path integral approach to electron scattering in classical electromagnetic potential
Chuang Xu(许闯), Feng Feng(冯锋), Ying-Jun Li(李英骏). Chin. Phys. B, 2016, 25(5): 050303.
[8] Influence of electron correlations on double-capture process in proton helium collisions
Hoda Ghavaminia, Ebrahim Ghanbari-Adivi. Chin. Phys. B, 2015, 24(7): 073401.
[9] Selection rules for electric multipole transition of diatomic molecule in scattering experiments
Zhu Lin-Fan (朱林繁), Tian Hong-Chun (田红春), Liu Ya-Wei (刘亚伟), Kang Xu (康旭), Liu Guo-Xing (刘国兴). Chin. Phys. B, 2015, 24(4): 043101.
[10] Projectile angular-differential cross sections for single electron transfer in fast He+-He collisions
Ebrahim Ghanbari-Adivi, Hoda Ghavaminia. Chin. Phys. B, 2015, 24(3): 033401.
[11] Ionization cross sections for electron scattering from metastable rare-gas atoms (Ne* and Ar*)
Zhang Yong-Zhi (张永志), Zhou Ya-Jun (周雅君). Chin. Phys. B, 2013, 22(7): 073402.
[12] Influence of drain bias on the electron mobility in the AlGaN/AlN/GaN heterostructure field-effect transistors
Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Cai Shu-Jun (蔡树军), Dun Shao-Bo (敦少博), Liu Bo (刘波), Yin Jia-Yun (尹甲运), Zhang Xiong-Wen (张雄文), Fang Yu-Long (房玉龙), Lin Zhao-Jun (林兆军), Meng Ling-Guo (孟令国), Luan Chong-Biao (栾崇彪). Chin. Phys. B, 2013, 22(6): 067104.
[13] Momentum-space calculation of electron-CO elastic collision
Wang Yuan-Cheng (王远成), Ma Jia (马佳), Zhou Ya-Jun (周雅君). Chin. Phys. B, 2013, 22(2): 023402.
[14] Electron inelastic mean free paths in solids: A theoretical approach
Siddharth H. Pandya, B. G. Vaishnav, K. N. Joshipura. Chin. Phys. B, 2012, 21(9): 093402.
[15] Total cross sections for electron scattering from fluoromethanes: A revised additivity rule method
Tan Xiao-Ming(谭晓明) and Zhao Gang(赵刚) . Chin. Phys. B, 2012, 21(6): 063402.
No Suggested Reading articles found!