Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 020305    DOI: 10.1088/1674-1056/22/2/020305
GENERAL Prev   Next  

Investigations on quantum correlation of coupled qubits in squeezed vacuum reservoir

Ji Ying-Hua (嵇英华)a c, Liu Yong-Mei (刘咏梅)b
a Department of Physics, Jiangxi Normal University, Nanchang 330022, China;
b College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China;
c Key Laboratory of Photoelectronics and Telecommunication of Jiangxi Province, Nanchang 330022, China
Abstract  In this paper, we investigate the quantum correlation of coupled qubits which are initially in maximally entangled mixed states in squeezed vacuum reservoir. We compare and analyse the effects of squeezed parameters on quantum discord and quantum concurrence. The results show that in squeezed vacuum reservoir, the quantum discord and quantum concurrence perform completely opposite behaviors to the change of squeezed parameters. Quantum discord survives longer with the increase of squeezed amplitude parameter, but entanglement death turns faster on the contrary. The results also indicate that the classical correlation of the system is smaller than quantum discord in vacuum reservoir, while it is bigger than quantum discord in squeezed vacuum reservoir. The quantum discord and classical correlation are more robust than quantum concurrence in the two reservoir environments, which indicates that the entanglement actually is easily affected by decoherence and quantum discord has stronger ability to avoid decoherence in squeezed vacuum reservoir.
Keywords:  quantum correlation      coupled qubits      quantum discord      concurrence  
Received:  20 April 2012      Revised:  10 July 2012      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11164009).
Corresponding Authors:  Ji Ying-Hua     E-mail:  ahmxhxtt@yahoo.cn

Cite this article: 

Ji Ying-Hua (嵇英华), Liu Yong-Mei (刘咏梅) Investigations on quantum correlation of coupled qubits in squeezed vacuum reservoir 2013 Chin. Phys. B 22 020305

[1] Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature (London) 403 869
[2] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[3] Ji Y H, Liu Y M and Wang Z S 2011 Chin. Phys. B 20 070304
[4] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[5] Lopez C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[6] Li P, Zhang Q and You J Q 2009 Phys. Rev. A 79 014303
[7] Yu T and Eberly J H 2009 Science 323 598
[8] Mintert F, Carvalho A R R, Kus M and Buchleitner A 2005 Phys. Rep. 415 207
[9] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[10] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[11] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nature Commun. 10.1038 1005
[12] Qian Y and Xu J B 2012 Chin. Phys. B 21 030305
[13] IKram M, Li F L and Zubairy M S 2007 Phys. Rev. A 75 062336
[14] Hernandez M and Orszag M 2008 Phys. Rev. A 78 042114
[15] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[16] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[17] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[18] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[19] Jin J S, Yu C S, Pei P and Song H S 2010 J. Opt. Soc. Am. B 27 1799
[20] Wang C Z, Li C X, Nie L Y and Li J F 2011 J. Phys. B: At. Mol. Opt. 44 015503
[21] Ishizaka S and Hiroshima T 2001 Phys. Rev. A 62 022310
[1] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[2] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[3] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[4] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[5] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[6] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[7] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[8] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[9] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[10] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[11] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[12] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[13] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[14] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[15] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
No Suggested Reading articles found!