|
|
Angular distributions of CH3I fragment ions under the irradiation of single pulse and trains of ultrashort laser pulses |
Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Sun Chang-Kai (孙长凯), Hu Zhan (胡湛) |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130021, China |
|
|
Abstract The angular distribution of CH3I is investigated experimentally using a single Fourier transform-limited laser pulse and a pulse train, where a 90-fs 800-nm linearly polarized laser field with a moderate intensity of 2.8×1013 W/cm2 is used. The dynamic alignment is demonstrated in a single pulse experiment. Moreover, a pulse train is used to optimize the molecular alignment, and the alignment degree is almost identical to that with the single pulse. The results are analysed by using chirped femtosecond laser pulses, and it demonstrates that the structure of pulse train rather than its effective duration is crucial to the molecular alignment.
|
Received: 11 April 2012
Revised: 13 June 2012
Accepted manuscript online:
|
PACS:
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774056 and 10974070), the Fundamental Research Funds for the Central Universities, China (Grant No. 200903371), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20100061110045). |
Corresponding Authors:
Hu Zhan
E-mail: huzhan@jlu.edu.cn
|
Cite this article:
Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Sun Chang-Kai (孙长凯), Hu Zhan (胡湛) Angular distributions of CH3I fragment ions under the irradiation of single pulse and trains of ultrashort laser pulses 2013 Chin. Phys. B 22 013302
|
[1] |
Pinkham D and Jones R R 2005 Phys. Rev. A 72 023418
|
[2] |
Kanai T, Minemoto S and Sakai H 2007 Phys. Rev. Lett. 98 053002
|
[3] |
Guan X X, Bartschat K and Schneider B I 2011 Phys. Rev. A 84 033403
|
[4] |
Li Y, Yang S P, Jia X Y and Chen J 2010 Chin. Phys. B 19 043303
|
[5] |
Miyazaki K, Shimizu T and Normand D 2004 J. Phys. B: At. Mol. Opt. Phys. 37 753
|
[6] |
Pruna F R, Springate E, Offerhaus H L, Krishnamurthy M, Farid N, Nicole C and Vrakking M J J 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4919
|
[7] |
Ma R, Wu C Y, Xu N, Huang J, Yang H and Gong Q H 2005 Chem. Phys. Lett. 415 58
|
[8] |
Wu C Y, Huang J, Xu N, Ma R, Yang H, Jiang H B and Gong Q H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1035
|
[9] |
Graham P, Ledingham K W D, Singhai R P, Hankin S M, Mccanny T, Fang X, Kosmidis C, Tzallas P, Taday P F and Langley A J 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4015
|
[10] |
Kaziannis S, Siozos P and Kosmidis C 2005 Chem. Phys. Lett. 401 115
|
[11] |
Stapelfeldt H and Seideman T 2003 Rev. Mod. Phys. 75 543
|
[12] |
Jiang H B, Wu C Y, Ma R, Huang J, Wang R H, Yang H and Gong Q H 2005 Chem. Phys. Lett. 406 116
|
[13] |
Wang F, Jiang H B and Gong Q H 2012 Chin. Phys. B 21 054212
|
[14] |
Chen D Y, Wang Y Q, Xia Y Q, Fan R W and Zhang S 2009 Chin. Phys. B 18 3850
|
[15] |
Leibscher M, Averbukh I S and Rabitz H 2003 Phys. Rev. Lett. 90 213001
|
[16] |
Bisgaard C Z, Viftrup S S and Stapelfeldt H 2006 Phys. Rev. A 73 053410
|
[17] |
Bisgaard C Z, Poulsen M D, Péronne E, Viftrup S S and Stapelfeldt H 2004 Phys. Rev. Lett. 92 173004
|
[18] |
Leibscher M, Averbukh I S and Rabitz H 2004 Phys. Rev. A 69 013402
|
[19] |
Horn C, Wollenhaupt M, Krug M, Baumert T, Nalda R D and Bańares L 2006 Phys. Rev. A 73 031401(R)
|
[20] |
Renard M, Hertz E, Lavorel B and Faucher O 2004 Phys. Rev. A 69 043401
|
[21] |
Zhang S A, Lu C H, Jia T Q, Sun Z R and Qiu J R 2011 J. Chem. Phys. 135 224308
|
[22] |
Wu D, Wang Q Q, Cheng X H, Jin M X, Li X Y, Hu Z and Ding D J 2007 J. Phys. Chem. A 111 9494
|
[23] |
Wang Q Q, Wu D, Jin M X, Liu F C, Hu F F, Cheng X H, Liu H, Hu Z, Ding D J, Mineo H, Dyakov Y A, Mebel A M, Chao S D and Lin S H 2008 J. Chem. Phys. 129 204302
|
[24] |
Hu Z, Singha S and Gordon R J 2010 Phys. Rev. B 82 115204
|
[25] |
Singha S, Hu Z and Gordon R J 2011 J. Phys. Chem. A 115 6093
|
[26] |
Banerjee S, Kumar G R and Mathur D 1999 Phys. Rev. A 60 R3369
|
[27] |
Xu N, Wu C Y, Ma R, Huang J, Wu Z F, Liang Q Q, Yang H and Gong Q H 2006 J. Am. Soc. Mass. Spectrom. 17 1717
|
[28] |
Jiang H B, Wu C Y, Ma R, Huang J, Wang R H, Yang H and Gong Q H 2005 Chem. Phys. Lett. 406 116
|
[29] |
Cardoza D, Baertschy M and Weinacht T 2005 J. Chem. Phys. 123 074315
|
[30] |
Schmidt M, Dobosz S, Meynadier P, Doliveira P, Normand D, Charron E and Weiner A S 1999 Phys. Rev. A 60 4706
|
[31] |
Kaziannis S, Kosmidis C and Lyras A 2008 J. Phys. Chem. A 112 4754
|
[32] |
Pinkham D, Mooney K E and Jones R R 2007 Phys. Rev. A 75 013422
|
[33] |
Suzuki T, Sugawara Y, Minemoto S and Sakai H 2008 Phys. Rev. Lett. 100 033603
|
[34] |
Averbukh I S and Arvieu R 2001 Phys. Rev. Lett. 87 163601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|