|
|
Investigation on the influence of atomic potentials on the above threshold ionization |
Tian Yuan-Ye (田原野)a, Li Su-Yu (李苏宇)a, Wei Shan-Shan (魏珊珊)a, Guo Fu-Ming (郭福明)a, Zeng Si-Liang (曾思良)b c, Chen Ji-Gen (陈基根)d, Yang Yu-Jun (杨玉军)a |
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
b Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
c Science and Technology Computation Physics Laboratory, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
d Department of Physics and Materials Engineering, Taizhou University, Taizhou 318000, China |
|
|
Abstract We systematically investigate the influence of atomic potentials on the above-threshold ionization (ATI) spectra in one-dimensional (1D) cases and compare them with the three-dimensional (3D) case by numerically solving the time-dependent Schrödinger equation. It is found that the direct ionization plateau and the rescattering plateau of the ATI spectrum in the 3D case can be well reproduced by the 1D ATI spectra calculated from the supersolid-core potential and the soft-core potential, respectively. By analyzing the factors that affect the yield of the ATI spectrum, we propose a modified-potential with which we can reproduce the overall 3D ATI spectrum. In addition, the influence of the incident laser intensities and frequencies on the ATI spectra calculated from the proposed modified potential is studied.
|
Received: 05 September 2013
Revised: 08 November 2013
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grant Nos. 11274141, 11034003, 11304116, 11274001, and 11247024), and the Jilin Provincial Research Foundation for Basic Research, China (Grant No. 20140101168JC). |
Corresponding Authors:
Yang Yu-Jun
E-mail: yangyj@jlu.edu.cn
|
About author: 32.80.Rm; 42.50.Hz |
Cite this article:
Tian Yuan-Ye (田原野), Li Su-Yu (李苏宇), Wei Shan-Shan (魏珊珊), Guo Fu-Ming (郭福明), Zeng Si-Liang (曾思良), Chen Ji-Gen (陈基根), Yang Yu-Jun (杨玉军) Investigation on the influence of atomic potentials on the above threshold ionization 2014 Chin. Phys. B 23 053202
|
[1] |
Li X F, L'Huillier A, Ferray M, Lompré L A and Mainfray G 1989 Phys. Rev. A 39 5751
|
[2] |
Macklin J J, Kmetec J D and Gordon C L 1993 Phys. Rev. Lett. 70 766
|
[3] |
Wang B B, Li X F and Fu P M 1998 Chin. Phys. Lett. 15 195
|
[4] |
Luo L Y, Du H C and Hu B T 2012 Chin. Phys. B 21 033202
|
[5] |
Fittinghoff D N, Bolton P R, Chang B and Kulander K C 1992 Phys. Rev. Lett. 69 2642
|
[6] |
Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227
|
[7] |
Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127
|
[8] |
Tian Y Y, Guo F M and Yang Y J 2013 Acta Phys. Sin. 62 073202 (in Chinese)
|
[9] |
Sun C P, Zhao S F, Chen J H and Zhou X X 2011 Chin. Phys. B 20 113201
|
[10] |
Cormier E, Garzella D, Breger P, Agostini P, Chériaux G and Leblanc C 2001 J. Phys. B 34 L9
|
[11] |
Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G and Walther H 2002 Advances in Atomic, Molecular, and Optical Physics 48 35
|
[12] |
Armstrong G S J, Parker J S and Taylor K T 2011 New J. Phys. 13 013024
|
[13] |
Toyota K, Tolstikhin O I, Morishita T and Watanabe S 2009 Phys. Rev. Lett. 103 153003
|
[14] |
Li M, Liu Y Q, Liu H, Ning Q C, Fu L B, Liu J, Deng Y K, Wu C Y, Peng L Y and Gong Q H 2013 Phys. Rev. Lett. 111 023006
|
[15] |
Tong X M, Hino K and Toshima N 2006 Phys. Rev. A 74 031405
|
[16] |
Kling M F, Rauschenberger J, Verhoef A J, Hasovic E, Uphues T, Milošević D B, Muller H G and Vrakking M J J 2008 New J. Phys. 10 025024
|
[17] |
Meckel M, Comtois D, Zeidler D, Staudte A, Pavičić D, Bandulet H C, Pépin H, Kieffer J C, Dörner R, Villeneuve D M and Corkum P B 2008 Science 320 1478
|
[18] |
van der Zwan E V and Lein M 2012 Phys. Rev. Lett. 108 043004
|
[19] |
Su Q and Eberly J H 1991 Phys. Rev. A 44 5997
|
[20] |
Silaev A A, Ryabikin M Y and Vvedenskii N V 2010 Phys. Rev. A 82 033416
|
[21] |
Yang Y J, Chen G, Chen J G and Zhu Q R 2004 Chin. Phys. Lett. 21 652
|
[22] |
Javanainen J, Eberly J H and Su Q 1988 Phys. Rev. A 38 3430
|
[23] |
Zhou Z Y and Chu S I 2011 Phys. Rev. A 83 013405
|
[24] |
Dionissopoulou S, Mercouris T, Lyras A and Nicolaides C A 1997 Phys. Rev. A 55 4397
|
[25] |
Sprangle P, Peñano J R and Hafizi B 2002 Phys. Rev. E 66 046418
|
[26] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[27] |
Ray D, Ulrich B, Bocharova I, Maharjan C, Ranitovic P, Gramkow B, Magrakvelidze M, De S, Litvinyuk I V, Le A T, Morishita T, Lin C D, Paulus G G and Cocke C L 2008 Phys. Rev. Lett. 100 143002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|