Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 053301    DOI: 10.1088/1674-1056/28/5/053301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effect of laser polarization on strong-field ionization and fragmentation of nitrous oxide molecules

Rui Wang(王瑞), Shi-Wen Zhang(张世文), Yang Liu(刘洋), Tian Sun(孙添), Hang Lv(吕航), Hai-Feng Xu(徐海峰)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  

Ionization of molecules in femtosecond laser fields is the most fundamental and important step of various strong-field physical processes. In this study, we experimentally investigate strong field ionization of linear N2O molecules using a time-of-flight mass spectrometer in 800-nm laser fields. Yields of the parent ion and different fragment ions are measured as a function of laser intensity in the range of 2.0×1013 W/cm2 to 3.6×1014 W/cm2. We also investigate the dependence of strong field ionization and dissociation of N2O on laser ellipticity and polarization direction. The significant role of laser induced electron re-collision in the formation of highly charged fragment ions is proved. The physical mechanism of strong field ionization and fragmentation is discussed, based on our experimental results.

Keywords:  strong laser field      re-collision      angular distribution      nitrous oxide  
Received:  02 January 2019      Revised:  31 January 2019      Accepted manuscript online: 
PACS:  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11534004, 11874179, and 11704149) and the Natural Science Foundation of Jilin Province, China (Grant No. 20180101289JC).

Corresponding Authors:  Hang Lv, Hai-Feng Xu     E-mail:  lvhang0811@jlu.edu.cn;xuhf@jlu.edu.cn

Cite this article: 

Rui Wang(王瑞), Shi-Wen Zhang(张世文), Yang Liu(刘洋), Tian Sun(孙添), Hang Lv(吕航), Hai-Feng Xu(徐海峰) Effect of laser polarization on strong-field ionization and fragmentation of nitrous oxide molecules 2019 Chin. Phys. B 28 053301

[1] Strickl, D and Mourou G 1985 Opt. Commun. 56 219
[2] Wolter B, Pullen M G, Baudisch M, Sclafani M, Hemmer M, Senftleben A, Schröter C D, Ullrich J, Moshammer R and Biegert J 2015 Phys. Rev. X 5 21034
[3] Vozzi C, Negro M and Stagira S 2012 J. Mod. Optic. 59 1283
[4] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389
[5] Fittinghofr' D N, Bolton P R, Chang B and Kulander K C 1992 Phys. Rev. Lett. 69 2642
[6] Auguste T, Monot P, Lompré L A, Mainfray G and Manus C 1992 J. Phys. B: At. Mol. Opt. Phys. 25 4181
[7] Zhao J and Lein M 2013 Phys. Rev. Lett. 111 43901
[8] Quan W, Lai X, Chen Y, Wang C, Hu Z, Liu X, Hao X, Chen J, Hasović E, Busuladžić M, Becker W and Milošević D B 2013 Phys. Rev. A 88 21401
[9] Agostini P, Fabre F, Mainfray G and Petite G 1979 Phys. Rev. Lett. 42 1127
[10] Nubbemeyer T, Gorling K, Saenz A, Eichmann U and Sandner A W 2008 Phys. Rev. Lett. 101 233001
[11] Zhang W, Yu Z, Gong X, Wang J, Lu P, Li H, Song Q, Ji Q, Lin K, Ma J, Li H, Sun F, Qiang J, Zeng H, He F and Wu J 2017 Phys. Rev. Lett. 119 253202
[12] Mairesse Y, de Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Auguste T, Carré B, Muller H G, Agostini P and Saliéres P 2004 Phys. Rev. Lett. 93 163901
[13] Gilbertson S, Khan S D, Wu Y, Chini M and Chang Z 2010 Phys. Rev. Lett. 105 93902
[14] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
[15] Hilber G, Lago A and Wallenstein R 1987 J. Opt. Soc. Am. B 4 1753
[16] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[17] Schafer K J, Yang B, Dimauro L F and Kulanderc K C 1993 Phys. Rev. Lett. 70 1599
[18] Zhao L, Dong J, Lv H, Yang T, Lian Y, Jin M, Xu H, Ding D, Hu S and Chen J 2016 Phys. Rev. A 94 53403
[19] Khan S D, Cheng Y, Möller M, Zhao K, Zhao B, Chini M, Paulus G G and Chang Z 2011 Appl. Phys. Lett. 99 161106
[20] Lai X, Wang C, Chen Y, Hu Z, Quan W, Liu X, Chen J, Cheng Y, Xu Z and Becker W 2013 Phys. Rev. Lett. 110 43002
[21] Wu M, Wang Y, Liu X, Li W, Hao X and Chen J 2013 Phys. Rev. A 87 13431
[22] Lin Z, Jia X, Wang C, Hu Z, Kang H, Quan W, Lai X, Liu X, Chen J, Zeng B, Chu W, Yao J, Cheng Y and Xu Z 2012 Phys. Rev. Lett. 108 223001
[23] Kotur M, Weinacht T C, Zhou C and Matsika S 2011 Phys. Rev. X 1 21010
[24] Kornev A S and Zon B A 2012 Phys. Rev. A 86 43401
[25] Frasinski L J, Hatherly P A and Codling K 1991 Phys. Lett. A 156 227
[26] Ueyama M, Hasegawa H, Hishikawa A and Yamanouchi K 2005 J. Chem. Phys. 123 154305
[27] Hishikawa A, Iwamae A, Hoshina K, Kono M and Ymanouchi K 1998 Res. Cham. Lntermed. 24 765
[28] Karimi R, Bisson É, Wales B, Beaulieu S, Giguére M, Long Z, Liu W, Kieffer J, Légaré F and Sanderson J 2013 J. Chem. Phys. 138 204311
[29] Afaneh F and Schmidt-Böcking H 2017 Int. J. Mod. Phys. B 31 1750215
[30] Zuo W, Ben S, Lv H, Zhao L, Guo J, Liu X, Xu H, Jin M and Ding D 2016 Phys. Rev. A 93 53402
[31] Zuo W, Lv H, Zhao L, Zhang Q and Xu H 2015 Int. J. Mass Spectrom. 392 80
[32] Taylor S, Eland J H D and Hochlaf M 2006 J. Chem. Phys. 124 204319
[33] Keldysh L V 1965 Sov. Phys. JETP 20 1307
[34] Larochelle S, Talebpour A and Chin S L 1998 J. Phys. B: At. Mol. Opt. Phys. 31 1201
[35] Yatsuhashi T, Nakashima N and Azuma J 2013 J. Phys. Chem. A 117 1393
[36] Graham P, Ledingham K W D, Singhal R P, Mccanny T, Hankin S M, Fang X, Tzallas P, Kosmidis C, Taday P F and Langley A J 2000 J. Phys. B: At. Mol. Opt. Phys. 33 3779
[37] Cornaggia C, Schmidt M and Normand D 1994 J. Phys. B: At. Mol. Opt. Phys. 27 L123
[38] Cornaggia C 1996 Phys. Rev. A 54 R2555
[39] Lin K, Jia X, Yu Z, He F, Ma J, Li H, Gong X, Song Q, Ji Q, Zhang W, Li H, Lu P, Zeng H, Chen J and Wu J 2017 Phys. Rev. Lett. 119 203202
[1] Creation and annihilation phenomena of electron and positron pairs in an oscillating field
M Jiang(江淼), D D Su(苏丹丹), N S Lin(林南省), and Y J Li(李英骏). Chin. Phys. B, 2021, 30(7): 070306.
[2] Geometric structure of N2Oq+ (q = 5, 6) studied by Ne8+ ion-induced Coulomb explosion imaging
Xi Zhao(赵曦), Xu Shan(单旭), Xiaolong Zhu(朱小龙), Lei Chen(陈磊), Zhenjie Shen(沈镇捷), Wentian Feng(冯文天), Dalong Guo(郭大龙), Dongmei Zhao(赵冬梅), Ruitian Zhang(张瑞田), Yong Gao(高永), Zhongkui Huang(黄忠魁), Shaofeng Zhang(张少锋), Xinwen Ma(马新文), and Xiangjun Chen(陈向军). Chin. Phys. B, 2021, 30(11): 113302.
[3] Ultrafast photoionization of ions and molecules by orthogonally polarized intense laser pulses: Effects of the time delay
Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙), Wei Feng(冯伟), Sheng-Peng Zhou(周胜鹏), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(1): 013201.
[4] Photoelectron imaging on vibrational excitation and Rydberg intermediate states in multi-photon ionization process of NH3 molecule
Ya-Nan Sun(孙亚楠), Yan-Hui Wang(王艳辉), Le-Le Song(宋乐乐), Hai-Bin Du(杜海滨), Xiao-Chun Wang(王晓春), Lan-Lai He(赫兰海), Si-Zuo Luo(罗嗣佐), Qin Yang(杨钦), Jing Leng(冷静), Fu-Chun Liu(刘福春). Chin. Phys. B, 2020, 29(9): 093201.
[5] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[6] Ionization of two-electron atom (xenon) studied by Bohmian mechanics theory
Yang Song(宋阳), Shu Han(韩姝), Yu-Jun Yang(杨玉军), Fu-Ming Guo(郭福明), and Su-Yu Li(李苏宇). Chin. Phys. B, 2020, 29(11): 113201.
[7] Atmospheric N2O gas detection based on an inter-band cascade laser around 3.939 μm
Chun-Yan Sun(孙春艳), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Jing-Jing Wang(王静静), Gang Cheng(程刚), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2020, 29(1): 010704.
[8] Efficient solver for time-dependent Schrödinger equation with interaction between atoms and strong laser field
Sheng-Peng Zhou(周胜鹏), Ai-Hua Liu(刘爱华), Fang Liu(刘芳), Chun-Cheng Wang(王春成), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(8): 083101.
[9] Photoelectron imaging of resonance-enhanced multiphoton ionization and above-threshold ionization of ammonia molecules in a strong 800-nm laser pulse
Le-Le Song(宋乐乐), Ya-Nan Sun(孙亚楠), Yan-Hui Wang(王艳辉), Xiao-Chun Wang(王晓春), Lan-Hai He(赫兰海), Si-Zuo Luo(罗嗣佐), Wen-Hui Hu(胡文惠), Qiu-Nan Tong(佟秋男), Da-Jun Ding(丁大军), Fu-Chun Liu(刘福春). Chin. Phys. B, 2019, 28(6): 063201.
[10] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[11] Branching ratio and angular distribution of ejected electrons from Eu 4f76p1/2nd auto-ionizing states
Xiao-Rui Wu(武晓瑞), Li Shen(沈礼), Kai Zhang(张开), Chang-Jian Dai(戴长建), Yu-Na Yang(杨玉娜). Chin. Phys. B, 2016, 25(9): 093203.
[12] Rydberg excitation of neutral nitric oxide molecules instrong UV and near-IR laser fields
Lv Hang (吕航), Zhang Jun-Feng (张军峰), Zuo Wan-Long (左万龙), Xu Hai-Feng (徐海峰), Jin Ming-Xing (金明星), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(6): 063303.
[13] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[14] Deflections of photoelectron classical trajectories in screened Coulomb potentials of H2+
Qin Bo-Ya (秦博雅), Wang Pei-Jie (王培杰), He Feng (何峰). Chin. Phys. B, 2015, 24(11): 114208.
[15] The VMI study on angular distribution of ejected electrons from Eu 4f76p1/26d autoionizing states
Zhang Kai (张开), Shen Li (沈礼), Dong Cheng (董程), Dai Chang-Jian (戴长建). Chin. Phys. B, 2015, 24(10): 103204.
No Suggested Reading articles found!