Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 114202    DOI: 10.1088/1674-1056/21/11/114202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Deriving some quantum optical identities using the general ordering theorem

Farid Shähandeh, Mohammad Reza Bazrafkan, Elahe Nahvifard
Physics Department, Faculty of Science, Imam Khomeini International University, Qazvin 34149-16818, I. R. Iran
Abstract  Using the newly introduced general ordering theorem by Shähandeh and Bazrafkan, we derive and generalize some quantum optical identities and give their applications.
Keywords:  s-ordered expansion of operators      general ordering theorem  
Received:  19 March 2012      Revised:  19 April 2012      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the Imam Khomeini International University, I. R. Iran (Grant Nos. 751075-91 and 383042-91).
Corresponding Authors:  Farid Shähandeh     E-mail:  shahandeh@ikiu.ac.ir

Cite this article: 

Farid Shähandeh, Mohammad Reza Bazrafkan, Elahe Nahvifard Deriving some quantum optical identities using the general ordering theorem 2012 Chin. Phys. B 21 114202

[1] Cahill K E and Glauber R J 1969 Phys. Rev. 177 1857
[2] Cahill K E and Glauber R J 1969 Phys. Rev. 177 1882
[3] Schleich W P 2001 Quantum Optics in Phase Space (New York: Wiley-VCH)
[4] Fan H Y 2010 Chin. Phys. B 19 050303
[5] Fan H Y, Hu L Y and Yuan H C 2010 Chin. Phys. B 19 060305
[6] Fan H Y 2003 J. Opt. B: Quantum Semiclass Opt. 5 R147
[7] Fan H Y, Yuan H C and Hu L Y 2010 Chin. Phys. B 19 104204
[8] Fan H Y 2010 Commun. Theor. Phys. 53 344
[9] Shähandeh F and Bazrafkan M R 2012 J. Phys. A: Math. Theor. 45 155204
[10] Glauber R J 2007 Quantum Theory of Optical Coherence (Weinheim: Wiley-VCH)
[11] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (New York: Cambridge University Press)
[12] Erdélyi A 1953 Higher Transcendental Functions (McGraw-Hill: The Batemann Manuscript Project)
[13] Dattoli G 2003 J. Math. Anal. Appl. 284 447
[14] Bayin S S 2006 Mathematical Methods in Science and Engineering (Hoboken: Wiley)
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[3] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[9] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
[10] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[11] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[12] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[13] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[14] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[15] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
No Suggested Reading articles found!