Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100301    DOI: 10.1088/1674-1056/21/10/100301
GENERAL Prev   Next  

A realizable multi-bit dense coding scheme with an Einstein–Podolsky–Rosen channel

Guo Qi (郭奇)a, Cheng Liu-Yong (程留永)b, Wang Hong-Fu (王洪福)a, Zhang Shou (张寿)a, Yeon Kyu-Hwangc
a Department of Physics, College of Science, Yanbian University, Yanji 133002, China;
b Center for the Condensed-Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
c BK21 Program Physics & Department of Physics, College of Natural Science, Chungbuk National University, Cheonju, Chungbuk 361-763, Republic of Korea
Abstract  We propose a multi-bit dense coding scheme by using only an Einstein-Podolsky-Rosen (EPR) channel and assistant qubits. It is shown that no matter how many classical bits there are, the quantum channel is always a Bell state. The present dense coding process can also prepare non-local multi-particle Greenberger-Horne-Zeilinger (GHZ) states at one of the participants. The quantum circuits for this dense coding process are constructed, the deterministic implementation method in an optical system based on the cross-Kerr nonlinearities is shown.
Keywords:  dense coding      Greenberger-Horne-Zeilinger state      cross-Kerr nonlinearity  
Received:  09 January 2012      Revised:  24 May 2012      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11147174).
Corresponding Authors:  Zhang Shou     E-mail:  szhang@ybu.edu.cn

Cite this article: 

Guo Qi (郭奇), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿), Yeon Kyu-Hwang A realizable multi-bit dense coding scheme with an Einstein–Podolsky–Rosen channel 2012 Chin. Phys. B 21 100301

[1] Bennett C H and Wiesner S J 1993 Phys. Rev. Lett. 69 2881
[2] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[3] Hao J C, Li C F and Guo G C 2001 Phys. Rev. A 63 054301
[4] Hausladen P, Jozsa R, Schumacher B, Westmoreland M and Wootters W K 1996 Phys. Rev. A 54 1869
[5] Liu X S, Long G L, Tong D M and Li F 2002 Phys. Rev. A 65 022304
[6] Bose S, Plenio M B and Vedral V 2000 J. Mod. Opt. 47 291
[7] Fu C B, Xia Y and Zhang S 2006 Chin. Phys. 15 1682 [RefAutoNo] Pan C N and Fang M F 2008 Chin. Phys. B 17 34
[8] Li X Y, Pan Q, Jing J T, Zhang J, Xie C D and Peng K C 2002 Phys. Rev. Lett. 88 047904
[9] Fang X M, Zhu X W, Feng M, Mao X A and Du F 2000 Phys. Rev. A 61 022307
[10] Ye L and Guo G C 2005 Phys. Rev. A 71 034304
[11] Lin X M, Zhou Z W, Xue P, Gu Y J and Guo G C 2003 Phys. Lett. A 313 351 [RefAutoNo] Pan G Z, Yang M and Cao Z L 2009 Chin. Phys. B 18 2319
[12] Gorbachev V N, Zhiliba A I, Trubilko A I and Yakovleva E S arXiv: quant-ph/0011124
[13] Lee H J, Ahn D and Hwang S W 2002 Phys. Rev. A 66 024304
[14] Agrawal P and Pati A 2006 Phys. Rev. A 74 062320
[15] Wang M Y and Yan F L 2011 Chin. Phys. B 20 120309
[16] Wang X W, Shan Y G, Xia L X and Lu M W 2003 Phys. Lett. A 364 7
[17] Lukin M D and Imamoğlu A 2000 Phys. Rev. Lett. 84 1419 [RefAutoNo] Wu Y, Saldama J and Zhu Y 2003 Phys. Rev. A 67 013811
[18] Friedler I, Kurizki G and Petrosyan D 2005 Phys. Rev. A 71 023803
[19] Sun H, Feng X L, Gong S Q and Oh C H 2009 Phys. Rev. B 79 193404 [RefAutoNo] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[20] Bai J, Guo Q, Cheng L Y, Shao X Q, Wang H F, Zhang S and Yeon K H 2011 Chin. Phys. B 20 120307
[21] Qian J, Feng X L and Gong S Q 2005 Phys. Rev. A 72 052308 [RefAutoNo] Lin X M, Chen Z H, Lin G W, Chen X D and Ni B B 2009 Opt. Commun. 282 3371
[22] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[23] Vitali D, Fortunato M and Tombesi P 2000 Phys. Rev. Lett. 85 455
[24] Shapiro J H and Razavi M 2007 New J. Phys. 9 16
[1] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[2] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[3] Invariants-based shortcuts for fast generating Greenberger—Horne—Zeilinger state among three superconducting qubits
Jing Xu(徐晶), Lin Yu(于琳), Jin-Lei Wu(吴金雷), Xin Ji(计新). Chin. Phys. B, 2017, 26(9): 090301.
[4] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[5] Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang. Chin. Phys. B, 2016, 25(2): 020306.
[6] Effects of intrinsic decoherence on various correlations and quantum dense coding in a two superconducting charge qubit system
Wang Fei (王飞), Maimaitiyiming-Tusun (麦麦提依明·吐孙), Parouke-Paerhati (帕肉克·帕尔哈提), Ahmad-Abliz (艾合买提·阿不力孜). Chin. Phys. B, 2015, 24(9): 090307.
[7] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[8] Time-bin-encoding-based remote states generation of nitrogen-vacancy centers through noisy channels
Su Shi-Lei (苏石磊), Chen Li (陈丽), Guo Qi (郭奇), Wang Hong-Fu (王洪福), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2015, 24(2): 020305.
[9] Efficient scheme for realizing quantum dense coding with GHZ state in separated low-Q cavities
Sun Qian (孙倩), He Juan (何娟), Ye Liu (叶柳). Chin. Phys. B, 2014, 23(6): 060305.
[10] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[11] Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity
Wang Zhi-Hui (王志会), Zhu Long (朱龙), Su Shi-Lei (苏石磊), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(9): 090309.
[12] Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(5): 050309.
[13] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
[14] Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity
Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Sun Li-Li (孙立莉), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030313.
[15] Quantum superdense coding based on hyperentanglement
Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Chen Li (陈丽), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2012, 21(8): 080303.
No Suggested Reading articles found!