Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100302    DOI: 10.1088/1674-1056/21/10/100302
GENERAL Prev   Next  

The Fresnel–Weyl complementary transformation

Xie Chuan-Mei (谢传梅)a b, Fan Hong-Yi (范洪义)b
a College of Physics & Material Science, Anhui University, Hefei 230039, China;
b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  Based on the newly developed coherent-entangled state representation, we propose the so-called Fresnel-Weyl complementary transformation operator. The new operator plays the roles of both Fresnel transformation (for (a1-a2)√2 and the Weyl transformation (for (a1+a2)√2. Physically, (a1-a2)√2 and (a1+a2)√2 could be a symmetric beamsplitter's two output fields for the incoming fields a1 and a2. We show that the two transformations are concisely expressed in the coherent-entangled state representation as a projective operator in the integration form.
Keywords:  coherent-entangled state representation      Fresnel-Weyl complementary transformation      beamsplitter  
Received:  15 February 2012      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.67.-a (Quantum information)  
Fund: Project supported by the Doctoral Scientific Research Startup Fund of Anhui University, China (Grant No. 33190059), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113401120004), and the Open Funds from National Laboratory for Infrared Physics, Chinese Academy of Sciences (Grant No. 201117).
Corresponding Authors:  Xie Chuan-Mei     E-mail:  xiecmei@mail.ustc.edu.cn

Cite this article: 

Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义) The Fresnel–Weyl complementary transformation 2012 Chin. Phys. B 21 100302

[1] Dirac P A 1930 The Principles of Quantum Mechanics (Oxford: Clarendon Press)
[2] Cohen-Tannoudji C, Diu B and Laboe F 1991 Quantum Mechanics 2nd edn. (New York: Wiley)
[3] Schleich W P 2001 Quantum Optics in Phase Space (Birlin: Wiley-VCH)
[4] Vogel K and Risken H 1989 Phys. Rev. A 40 2847
[5] Smithey D T, Beck M and Raymer M G 1993 Phys. Rev. Lett. 70 1244
[6] Fan H Y and Lu H L 2006 Opt. Commun. 258 51
[7] Fan H Y 2003 Commun. Theor. Phys. 40 589
[8] Fan H Y and Hu L Y 2008 Chin. Phys. B 17 1640
[9] Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831
[10] Xie C M, Fan H Y and Wan S L 2010 Chin. Phys. B 19 064207
[11] Liu T K, Shan C J, Liu J B and Fan H Y 2010 Chin. Phys. B 19 090307
[12] Jiang N Q and Zheng Y Z 2006 Phys. Rev. A 74 012306
[13] Fan H Y, Xu X X, Yuan H C, Wang S, Wang Z, Xu P and Jiang N Q 2011 Chin. Phys. B 20 070301
[14] Scully M O and Zubairy M S 1997 Quamtum Optics (Cambridge: Cambridge University Press)
[15] Fan H Y, Hu L Y and Yuan H C 2010 Chin. Phys. B 19 060305
[16] Fan H Y 2004 Commun. Theor. Phys. 41 205
[17] Fan H Y and Lu H L 2004 J. Phys. A: Math. Gen. 37 10933
[18] Fan H Y and Ruan T N 1982 Sci. Sin. 27 392
[1] Wave-particle duality relation with a quantum N-path beamsplitter
Dong-Yang Wang(王冬阳), Jun-Jie Wu(吴俊杰), Yi-Zhi Wang(王易之), Yong Liu(刘雍), An-Qi Huang(黄安琪), Chun-Lin Yu(于春霖), and Xue-Jun Yang(杨学军). Chin. Phys. B, 2021, 30(5): 050302.
[2] Generation of a new bipartite coherent-entangled state and its applications
Zhang Bao-Lai(张宝来), Meng Xiang-Guo(孟祥国), and Wang Ji-Suo(王继锁) . Chin. Phys. B, 2012, 21(3): 030304.
[3] Quantum teleportation of entangled squeezed vacuum states
Cai Xin-Hua (蔡新华). Chin. Phys. B, 2003, 12(10): 1066-1069.
No Suggested Reading articles found!