|
|
Quantum superdense coding based on hyperentanglement |
Zhao Rui-Tong (赵瑞通)a, Guo Qi (郭奇)a, Chen Li (陈丽)b, Wang Hong-Fu (王洪福)a, Zhang Shou (张寿)a |
a Department of Physics, College of Science, Yanbian University, Yanji 133002, China; b Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract We present a scheme for quantum superdense coding with hyperentanglement, in which the sender can transfer four bits of classical information by sending only one photon. The important device in the scheme is hyperentangled Bell-state analyzer in both of polarization and frequency degrees of freedom, which is also constructed in the paper by using quantum nondemolition detector assisted by cross-Kerr nonlinearity. Our scheme can transfer more information with less resources than the existing schemes and is nearly deterministic and nondestructive.
|
Received: 16 December 2011
Revised: 12 February 2012
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11147174). |
Corresponding Authors:
Zhang Shou
E-mail: szhang@ybu.edu.cn
|
Cite this article:
Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Chen Li (陈丽), Wang Hong-Fu (王洪福), Zhang Shou (张寿) Quantum superdense coding based on hyperentanglement 2012 Chin. Phys. B 21 080303
|
[1] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Zhang X Z, Gong W G, Tan Y G, Ren Z Z and Guo X T 2009 Chin. Phys. B 18 2143
|
[3] |
Jiao R Z, Zhang C and Ma H Q 2011 Acta Phys. Sin. 60 110303 (in Chinese)
|
[4] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[5] |
Wang M Y and Yan F L 2011 Chin. Phys. B 20 120309
|
[6] |
Qin S J, Wen Q Y and Zhu F C 2008 Chin. Phys. Lett. 25 3551
|
[7] |
Yang Y G and Wen Q Y 2008 Chin. Phys. B 17 419
|
[8] |
Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
|
[9] |
Tan J and Fang M F 2006 Chin. Phys. 15 1695
|
[10] |
Yin J, Qian Y, Li X Q, Bao X H, Peng C Z, Yang T and Pan G S 2011 Acta Phys. Sin. 60 060308 (in Chinese)
|
[11] |
Ye L and Yu L B 2005 Phys. Lett. A 346 330
|
[12] |
Lee H J, Ahn D and Hwang S W 2002 Phys. Rev. A 66 024304
|
[13] |
Hao J C, Li C F and Guo G C 2001 Phys. Rev. A 63 054301
|
[14] |
Hiroshima T 2001 J. Phys. A: Math. Gen. 34 6907
|
[15] |
Zheng X J, Xu H, Fang M F and Zhu K C 2010 Chin. Phys. B 19 010309
|
[16] |
Ye L and Guo G C 2005 Phys. Rev. A 71 034304
|
[17] |
Braunstein S L and Kimble H J 2000 Phys. Rev. A 61 042302
|
[18] |
Vaidman L and Yoran N 1999 Phys. Rev. A 59 116
|
[19] |
Calsamiglia J 2002 Phys. Rev. A 65 030301(R)
|
[20] |
Kwiat P G 1997 J. Mod. Opt. 44 2173
|
[21] |
Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
|
[22] |
Walborn S P, Pádua S and Monken C H 2003 Phys. Rev. A 68 042313
|
[23] |
Barbieri M, Vallone G, Mataloni P and Martini F De 2007 Phys. Rev. A 75 042317
|
[24] |
Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
|
[25] |
Munro W J, Nemoto K, Spiller T P, Barrett S D, Kok P and Beausoleil R G 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S135
|
[26] |
Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
|
[27] |
Resch K J, Myrskog S H, Lundeen J S and Steinberg A M 2001 Phys. Rev. A 64 056101
|
[28] |
Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
|
[29] |
Du K and Qiao C F 2012 J. Mod. Opt. 59 611
|
[30] |
Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 773(R)
|
[31] |
Huntington E H and Ralph T C 2004 Phys. Rev. A 69 042318
|
[32] |
Huntington E H, Milford G N, Robilliard C and Ralph T C 2005 Opt. Lett. 30 2481
|
[33] |
Hofmann H F, Kojima K, Takeuchi S and Sasaki K 2003 J. Opt. B: Quantum Semiclass. Opt. 5 218
|
[34] |
Wittmann C, Andersen U L, Takeoka M, Sych D and Leuchs G 2010 Phys. Rev. A 81 062338
|
[35] |
Bloch M, McLaughlin S W, Merolla J M and Patois F 2007 Opt. Lett. 32 301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|