Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100209    DOI: 10.1088/1674-1056/21/10/100209
GENERAL Prev   Next  

Analysis of the equal width wave equation with the mesh-free reproducing kernel particle Ritz method

Cheng Rong-Jun (程荣军)a, Ge Hong-Xia (葛红霞)b
a Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
b Faculty of Science, Ningbo University, Ningbo 315211, China
Abstract  In this paper, we analyse the equal width (EW) wave equation by using the mesh-free reproducing kernel particle Ritz (kp-Ritz) method. The mesh-free kernel particle estimate is employed to approximate the displacement field. A system of discrete equations is obtained through the application of the Ritz minimization procedure to the energy expressions. The effectiveness of the kp-Ritz method for the EW wave equation is investigated by numerical examples in this paper.
Keywords:  meshless method      mesh-free kp-Ritz method      equal width (EW) wave equation      solitary wave  
Received:  04 March 2012      Revised:  09 April 2012      Accepted manuscript online: 
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6110007).
Corresponding Authors:  Cheng Rong-Jun     E-mail:  chengrongjun76@126.com

Cite this article: 

Cheng Rong-Jun (程荣军), Ge Hong-Xia (葛红霞) Analysis of the equal width wave equation with the mesh-free reproducing kernel particle Ritz method 2012 Chin. Phys. B 21 100209

[1] Donea J and Giuliani S 1974 Nucl. Eng. Des. 30 205
[2] Bathe K J and Khoshgoftaar M R 1979 Nucl. Eng. Des. 51 389
[3] Skerget P and Alujevic A1983 Nucl. Eng. Des. 76 47
[4] Belytschko T, Krongauz Y and Organ D 1996 Comput. Meth. Appl. Mech. Engng. 139 3
[5] Cheng Y M and Peng M J 2005 Sci. Chin. G: Phys., Mech. m & Astron. 48 641
[6] Cheng Y M and Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese)
[7] Qin Y X and Cheng Y M 2006 Acta Phys. Sin. 55 3215 (in Chinese)
[8] Cheng R J and Cheng Y M 2007 Acta Phys. Sin. 56 5569 (in Chinese)
[9] Dai B D and Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese)
[10] Cheng R J and Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese)
[11] Cheng R J and Ge H X 2009 Chin. Phys. B 18 4059
[12] Wang J F, Sun F X and Cheng R J 2010 Chin. Phys. B 19 060201
[13] Cheng R J and Ge H X 2010 Chin. Phys. B 19 090201
[14] Cheng Y M and Li J H 2006 Sci. Chin. G: Phys., Mech. m & Astron. 49 46
[15] Wang J F and Cheng Y M 2011 Chin. Phys. B 20 030206
[16] Cheng R J and Cheng Y M 2011 Chin. Phys. B 20 070206
[17] Cheng R J and Cheng Y M 2011 Acta Phys. Sin. 60 070206 (in Chinese)
[18] Cheng R J and Liew K M 2012 Engineering Analysis with Boundary Elements 36 203
[19] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese)
[20] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese)
[21] Bai F N, Li D M, Wang J F and Cheng Y M 2012 Chin. Phys. B 21 020204
[22] Cheng Y M, Liew K M and Kitipornchai S 2009 Int. J. Numer. Methods Eng. 78 1258
[23] Li S C and Cheng Y M 2004 Chin. J. Theor. Appl. Mech. 36 496
[24] Cheng R J and Cheng Y M 2007 Chin. J. Theor. Appl. Mech. 39 843
[25] Cheng R J and Ge H X 2012 Chin. Phys. B 21 040203
[26] Gao H F and Cheng Y M 2010 Int. J. Comput. Methods 7 55
[27] Gao H F and Cheng Y M 2009 Chin. J. Theor. Appl. Mech. 41 480
[28] Monaghan J J 1988 Comput. Phys. Commun. 48 89
[29] Chen W 2000 Engineering Analysis with Boundary Elements 26 577
[30] Belytschko T, Lu Y Y and Gu L 1994 Int. J. Numer. Meth. Eng. 37 229
[31] Liu W K, Jun S and Zhang Y F 1995 Int. J. Numer. Meth. Eng. 20 1081
[32] Cheng R J and Liew K M 2009 Comput. Mech. 45 1
[33] Atluri S N and Zhu T 1998 Comput. Mech. 22 117
[34] Cheng R J and Cheng Y M 2008 Appl. Numer. Math. 58 884
[35] Morrison P J and Meiss J D 1984 Physica 11D 30 324
[36] George A 1994 Solving Frontier Problems of Physics: Adomain Decomposition Method (Boston: Kluwer Academic Publishers)
[37] Parkes E J and Duffy B R 1998 Comput. Phys. Commun. 98 288
[38] Khater A H and Malfiet W 2002 Chaos, Solitons and Fractals 14 513
[39] Fan E 2000 Phys. Lett. A 277 212
[40] Abdou M A 2006 Physica A 36 394
[41] Gao Y T and Tian B 2001 Comput. Phys. Commun. 133 158
[42] Tang X Y and Lou S Y 2002 Chaos, Solitons and Fractals 14 1451
[43] Wazwaz A M 2005 Appl. Math. Comput. 16 561
[44] Ritz W 1909 Journal fur Reine and Angewandte Mathematik 135 1
[45] Rayleigh J W 1877 Theory of Sound Vol. 1. (New York: Macmillan) (reprinted by Dover Publications in 1945)
[46] Kitipornchai S, Xiang Y, Wang C M and Liew K M 1993 Int. J. Numer. Method Eng. 36 299
[47] Liew K M, Xiang Y, Wang C M and Kitipornchai S 1993 Comput. Methods Appl. Mech. Eng. 110 301
[48] Liew K M, Xiang Y, Kitipornchai S and Meek J L 1995 Comput. Methods Appl. Mech. Eng. 120 339
[49] Cheung Y K and Zhou D 2001 Computers and Structures 79 1923
[50] Cheung Y K and Zhou D 2002 Int. J. Solids Struct. 39 673
[51] Zeng H and Bert C W 2001 Int. J. Stab. Dyn. 1 125
[52] Su G H and Xiang Y 2002 Eng. Struc. 24 563
[53] Lim C W and Liew K M 1994 J. Sound Vib. 173 343
[54] Liew K M and Feng Z C 2001 Int. J. Mech. Sci. 43 2613
[55] Rubin S G and Graves R A1975 Computers and Fluids 3 1
[56] Saka B 2006 Appl. Math. Comput. 175 730
[57] Esen A 2005 Appl. Math. Comput. 168 65
[1] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[2] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[3] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[4] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[5] Decaying solitary waves propagating in one-dimensional damped granular chain
Zongbin Song(宋宗斌), Xueying Yang(杨雪滢), Wenxing Feng(封文星), Zhonghong Xi(席忠红), Liejuan Li(李烈娟), Yuren Shi(石玉仁). Chin. Phys. B, 2018, 27(7): 074501.
[6] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[7] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[8] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[9] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[10] Envelope solitary waves and their reflection and transmission due to impurities in a granular material
Wen-Qing Du(杜文青), Jian-An Sun(孙建安), Yang-Yang Yang(杨阳阳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(1): 014501.
[11] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[12] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[13] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[14] Fully nonlinear (2+1)-dimensional displacement shallow water wave equation
Feng Wu(吴锋), Zheng Yao(姚征), Wanxie Zhong(钟万勰). Chin. Phys. B, 2017, 26(5): 054501.
[15] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
No Suggested Reading articles found!