CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic properties of a Pt/Co2FeAl/MgO structure with perpendicular magnetic anisotropy |
Li Xiao-Qi (李晓其), Xu Xiao-Guang (徐晓光), Wang Sheng (王圣), Wu Yong (吴勇), Zhang De-Lin (张德林), Miao Jun (苗军), Jiang Yong (姜勇) |
State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract Microstructures and magnetic properties of Ta/Pt/Co2FeAl (CFA)/MgO multilayers are studied to understand perpendicular magnetic anisotropy (PMA) of half-metallic full-Heusler alloy films. PMA is realized in a 2.5-nm CFA film with B2-ordered structure observed by a high resolution transmission electron microscope. It is demonstrated that a high quality interface between the ferromagnetic layer and oxide layer is not essential for PMA. The conversions between in-plane anisotropy and PMA are investigated to study the dependence of magnetic moment on temperature. At the intersection points, the decreasing slope of the saturation magnetization (Ms) changes because of the conversions. The dependence of Ms on the annealing temperature and MgO thickness is also studied.
|
Received: 24 April 2012
Revised: 15 May 2012
Accepted manuscript online:
|
PACS:
|
73.43.Qt
|
(Magnetoresistance)
|
|
72.25.Ba
|
(Spin polarized transport in metals)
|
|
68.35.Ct
|
(Interface structure and roughness)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50831002, 50971025, 51071022, and 11174031), the National Basic Research Program of China (Grant No. 2012CB932702), the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), the Beijing Nova Program (Grant No. 2011031), the Beijing Municipal Natural Science Foundation, China (Grant No. 2102032), and the Fundamental Research Funds for the Central Universities. |
Corresponding Authors:
Xu Xiao-Guang
E-mail: xgxu@ustb.edu.cn
|
Cite this article:
Li Xiao-Qi (李晓其), Xu Xiao-Guang (徐晓光), Wang Sheng (王圣), Wu Yong (吴勇), Zhang De-Lin (张德林), Miao Jun (苗军), Jiang Yong (姜勇) Magnetic properties of a Pt/Co2FeAl/MgO structure with perpendicular magnetic anisotropy 2012 Chin. Phys. B 21 107307
|
[1] |
Moodera J S, Kinder L R, Wong T M and Meservey R 1995 Phys. Rev. Lett. 74 3273
|
[2] |
Miyazaki T and Tezuka N 1995 J. Magn. Magn. Mater. 139 L231
|
[3] |
Mathon J and Umerski A 2001 Phys. Rev. B 63 220403
|
[4] |
Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M and Yang S H 2004 Nature Mater. 3 862
|
[5] |
Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2004 Nature Mater. 3 868
|
[6] |
Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F and Ohno H 2008 Appl. Phys. Lett. 93 082508
|
[7] |
Julliére M 1975 Phys. Lett. A 54 225
|
[8] |
Wang W H, Liu E K, Kodzuka M, Sukegawa H, Wojcik M, Jedryka E, Wu G H, Inomata K, Mitani S and Hono K 2010 Phys. Rev. B 81 140402
|
[9] |
Wang W H, Sukegawa H, Shan R, Mitani S and Inomata K 2009 Appl. Phys. Lett. 95 182502
|
[10] |
Xu G L, Chen J D, Chen D, Ma J Z, Yu B H and Shi D H 2009 Chin. Phys. B 18 744
|
[11] |
Li G N, Jin Y J and Lee J I 2010 Chin. Phys. B 19 097102
|
[12] |
Wen Z C, Sukegawa H, Mitani S and Inomata K 2011 Appl. Phys. Lett. 98 192505
|
[13] |
Shuto Y, Nakane R, Wang W H, Sukegawa H, Yamamoto S, Tanaka M, Inomata K and Sugahara1 S 2010 Appl. Phys. Express 3 013003
|
[14] |
Balke B, Wurmehl S, Fecher G, Felser C and Kübler J 2008 Sci. Technol. Adv. Mater. 9 014102
|
[15] |
Picozzi S, Continenza A and Freeman A J 2002 Phys. Rev. B 66 094421
|
[16] |
Galanakis, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 174429
|
[17] |
Wang W H, Sukegawa H and Inomata K 2010 Appl. Phys. Express 3 093002
|
[18] |
Wen Z C, Sukegawa H, Mitani S and Inomata K 2011 Appl. Phys. Lett. 98 242507
|
[19] |
Li X Q, Xu X G, Zhang D L, Miao J, Zhan Q, Jalil M B A, Yu G H and Jiang Y 2010 Appl. Phys. Lett. 96 142505
|
[20] |
Li X Q, Yin S Q, Liu Y P, Zhang D L, Xu X G, Miao J and Jiang Y 2011 Appl. Phys. Express 4 043006
|
[21] |
Nistor L E, Rodmacq B, Auffret S and Dieny B 2009 Appl. Phys. Lett. 94 012512
|
[22] |
Xu X G, Zhang D L, Li X Q, Bao J, Jiang Y and Jalil M B A 2009 J. Appl. Phys. 106 123902
|
[23] |
Kobayashi K, Umetsu R Y, Kainuma R, Ishida K, Oyamada T, Fujita A and Fukamichi K 2004 Appl. Phys. Lett. 85 4684
|
[24] |
Kurt H, Venkatesan M and Coey J M D 2010 J. Appl. Phys. 108 073916
|
[25] |
Bordel C, Pizzini S, Vogel J, Mackay K, Voiron J, Galéra R M, Fontaine A, Auric P, Goedkoop J B and Brookes N B 1997 Phys. Rev. B 56 8149
|
[26] |
Tezuka N, Ikeda N, Miyazaki A, Sugimoto S, Kikuchi M and Inomata K 2006 Appl. Phys. Lett. 89 112514
|
[27] |
Gabor M S, Petrisor T Jr, Tiusan C, Hehn M and Petrisor T 2011 Phys. Rev. B 84 134413
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|