CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of the Jahn–Teller distortion on magnetic ordering in TbMn1-xFexO3 |
Jin Jin-Ling (靳金玲), Zhang Xiang-Qun (张向群), Li Guo-Ke (李国科), Cheng Zhao-Hua (成昭华) |
State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The Jahn-Teller distortion plays an important role in determining the exchange interaction in rare-earth manganites. In this work we study the influence of the Jahn-Teller distortion on the magnetic structures of TbMn1-xFexO3 (x=0, 0.02, 0.05, 0.10, and 0.20) single crystals in the basal MnO2 plane. The decrease in the quadruple splitting with the increasing Fe doping indicates the reduction of the Jahn-Teller distortion, which makes the nearest neighboring (NN) FM interaction dominant over the next nearest neighbor (NNN) AFM interaction. This alteration is favorable for the development of A-type AFM ordering instead of the spiral magnetic ordering, which collapses when x≥0.05. The analysis of dielectric data indicates that the ferroelectricity is arising from the peculiar spiral magnetic ordering.
|
Received: 17 May 2012
Revised: 04 June 2012
Accepted manuscript online:
|
PACS:
|
75.30.Fv
|
(Spin-density waves)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
77.85.+t
|
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934202 and 2011CB921801) and the National Natural Sciences Foundation of China (Grant Nos. 11174351, 50931006, 51021061, and 11034004). |
Corresponding Authors:
Cheng Zhao-Hua
E-mail: zhcheng@aphy.iphy.ac.cn
|
Cite this article:
Jin Jin-Ling (靳金玲), Zhang Xiang-Qun (张向群), Li Guo-Ke (李国科), Cheng Zhao-Hua (成昭华) Influence of the Jahn–Teller distortion on magnetic ordering in TbMn1-xFexO3 2012 Chin. Phys. B 21 107501
|
[1] |
Wang K F, Liu J M and Ren Z F 2009 Adv. Phys. 58 321
|
[2] |
Wilkins S B, Forrest T R, Beale T A W, Bland S R, Walker H C, Mannix D, Yakhou F, Prabhakaran D, Boothroyd A T, Hill J P, Hatton P D and McMorrow D F 2009 Phys. Rev. Lett. 103 207602
|
[3] |
Kimura T, Lawes G, Goto T, Tokura Y and Ramirez A P 2005 Phys. Rev. B 71 224425
|
[4] |
Yamasaki Y, Sagayama H, Goto T, Matsuura M, Hirota K, Arima T and Tokura Y 2007 Phys. Rev. Lett. 98 147204
|
[5] |
Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
|
[6] |
Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz M P, Chu Y H, Ederer C, Spaldin N A, Das R R, Kim D M, Baek S H, Eom C B and Ramesh R 2006 Nature Mater. 5 823
|
[7] |
Yuan G L, Or S W, Chan H L and Liu Z G 2007 J. Appl. Phys. 101 024106
|
[8] |
Noda K, Nakamura S, Nagayama J and Kuwahara H 2005 J. Appl. Phys. 97 10C103
|
[9] |
Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 6
|
[10] |
Chen J M, Lee J M, Chen C K, Chou T L, Lu K T, Haw S C, Liang K S, Chen C T, Jeng H T, Huang S W, Yang T J, Shen C C, Liu R S, Lin J Y and Hu Z 2009 Appl. Phys. Lett. 94 044105
|
[11] |
Wall S, Prabhakaran D, Boothroyd A T and Cavalleri A 2009 Phys. Rev. Lett. 103 097402
|
[12] |
Kimura T, Ishihara S, Shintani H, Arima T, Takahashi K T, Ishizaka K and Tokura Y 2003 Phys. Rev. B 68 060403(R)
|
[13] |
Dong S, Yu R, Yunoki S, Liu J M and Dagotto E 2009 Eur. Phys. J. B 71 339
|
[14] |
Kim S B, Je Moon S, Kim S J and Kim C S 2007 J. Magn. Magn. Mater. 310 e592
|
[15] |
Nikolov O, Hall I, Barilo S N and Guretskii S A 1994 J. Phys.: Condens. Matter 6 20
|
[16] |
Pimenov A, Mukhin A A, Ivanov V Y, Travkin V D, Balbashov A M and Loidl A 2006 Nature Phys. 2 97
|
[17] |
Zou Y H, Li W L, Wang S L, Zhu H W, Li P G and Tang W H 2012 J. Alloy. Compd. 519 82
|
[18] |
Yang C C, Chung M K, Li W H, Chan T S, Liu R S, Lien Y H, Huang C Y, Chan Y Y, Yao Y D and Lynn J W 2006 Phys. Rev. B 74 094409
|
[19] |
Kim W, Kum B Y, Kim C S and Supercond J 2011 Nov. Magn. 24 867
|
[20] |
Gütlich P, Link R and Trautwein A 1978 Mössbauer Spectroscopy and Transition Metal Chemistry (Berline: Springer Verlag)
|
[21] |
Cheng Z H, Wang Z H, Di N L, Kou Z Q, Wang G J, Li R W, Lu Y, Li Q A, Shen B G and Dunlap R A 2003 Appl. Phys. Lett. 83 1587
|
[22] |
Hong F, Cheng Z X, Zhao H Y, Kimura H and Wang X L 2011 Appl. Phys. Lett. 99 092502
|
[23] |
de Lima O F, Coaquira J A H, de Almeida R L, de Carvalho L B and Mali S K 2009 J. Appl. Phys. 105 013907
|
[24] |
Ishihara S, Inoue J and Maekawa S 1997 Phys. Rev. B 55 8280
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|