CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A functional probe with bowtie aperture and bull's eye structure for nanolithograph |
Wang Shuo (王硕)a, Li Xu-Feng (李旭峰)b, Wang Qiao (王乔)a, Guo Ying-Yan (郭英楠)a, Pan Shi (潘石)a |
a School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China; b School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China |
|
|
Abstract The bowtie aperture surrounded by concentric gratings (the bull's eye structure) integrated on the near-field scanning optical microscopy (NSOM) probe (aluminum coated fiber tip) for nanolithography has been investigated using the finite-difference time domain (FDTD) method. By modifying the parameters of the bowtie aperture and the concentric gratings, a maximal field enhancement factor of 391.69 has been achieved, which is 18 times larger than that obtained from the single bowtie aperture. Additionally, the light spot depends on the gap size of the bowtie aperture and can be confined to sub-wavelength. The superiority of the combination of the bowtie aperture and the bull's eye structure is confirmed, and the mechanism for the electric field enhancement in this derived structure is analyzed.
|
Received: 22 February 2012
Revised: 12 June 2012
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
42.82.Cr
|
(Fabrication techniques; lithography, pattern transfer)
|
|
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974025 and 61137005). |
Corresponding Authors:
Li Xu-Feng, Pan Shi
E-mail: xfli@mail.dlut.edu.cn; span@dlut.edu.cn
|
Cite this article:
Wang Shuo (王硕), Li Xu-Feng (李旭峰), Wang Qiao (王乔), Guo Ying-Yan (郭英楠), Pan Shi (潘石) A functional probe with bowtie aperture and bull's eye structure for nanolithograph 2012 Chin. Phys. B 21 107302
|
[1] |
Betzig E, Lewis A, Harootunian A, Isaacson M and Kratschmer E 1986 Biophys. J. 49 269
|
[2] |
Betzig E, Trautman J, Wolfe R, Gyorgy E, Finn P, Kryder M and Chang C H 1992 Appl. Phys. Lett. 61 142
|
[3] |
Smolyaninov I I, Mazzoni D L and Davis C C 1995 Appl. Phys. Lett. 67 3859
|
[4] |
Herndon M, Collins R, Hollingsworth R, Larson P and Johnson M 1999 Appl. Phys. Lett. 74 141
|
[5] |
Betzig E and Chichester R J 1993 Science 262 1422
|
[6] |
Bethe H 1944 Phys. Rev. 66 163
|
[7] |
Shi X, Hesselink L and Thornton R L 2003 Opt. Lett. 28 1320
|
[8] |
Matteo J, Fromm D, Yuen Y, Schuck P, Moerner W and Hesselink L 2004 Appl. Phys. Lett. 85 648
|
[9] |
Jin E and Xu X 2007 J. Heat Transfer 129 37
|
[10] |
Xu J Y, Wang J, Gai H F, Tian Q, Wang B X, Hao Z B and Han S 2006 Chin. Phys. Lett. 23 2587
|
[11] |
Sndur K and Challener W 2003 J. Microsc. 210 279
|
[12] |
Wang L, Uppuluri S M, Jin E X and Xu X 2006 Nano Lett. 6 361
|
[13] |
Jin E X and Xu X 2005 Appl. Phys. Lett. 86 111106
|
[14] |
Ebbesen T W, Lezec H, Ghaemi H, Thio T and Wolff P 1998 Nature 391 667
|
[15] |
Martin-Moreno L, Garcia-Vidal F, Lezec H, Pellerin K, Thio T, Pendry J and Ebbesen T 2001 Phys. Rev. Lett. 86 1114
|
[16] |
Sun M, Liu R J, Li Z Y, Cheng B Y, Zhang D Z, Yang H F and Jin A Z 2006 Chin. Phys. 15 1591
|
[17] |
Raether H 1988 Surface Plasmons (Berlin: Springer-Verlag)
|
[18] |
Zhou F, Liu Y and Li Z Y 2011 Chin. Phys. B 20 037303
|
[19] |
Liu B C, Yu L and Lu Z X 2011 Chin. Phys. B 20 037302
|
[20] |
Lezec H, Degiron A, Devaux E, Linke R, Martin-Moreno L, Garcia-Vidal F and Ebbesen T 2002 Science 297 820
|
[21] |
Lockyear M J, Hibbins A P, Roy Sambles J and Lawrence C R 2005 J. Opt. A: Pure Appl. Opt. 7 S152
|
[22] |
Mahboub O, Palacios S C, Genet C, Garcia-Vidal F, Rodrigo S G, Martin-Moreno L and Ebbesen T 2010 Opt. Express 18 11292
|
[23] |
Carretero-Palacios S, Mahboub O, Garcia-Vidal F, Martin-Moreno L, Rodrigo S G, Genet C and Ebbesen T 2011 Opt. Express 19 10429
|
[24] |
Ishihara K, Ohashi K, Ikari T, Minamide H, Yokoyama H, Shikata J and Ito H 2006 Appl. Phys. Lett. 89 201120
|
[25] |
Kinzel E C, Srisungsitthisunti P, Li Y, Raman A and Xu X 2010 Appl. Phys. Lett. 96 211116
|
[26] |
Markovic M I and Rakic A D 1990 Appl. Opt. 29 3479
|
[27] |
Lide D R 2004 CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (Boca Raton: CRC Press)
|
[28] |
Wang Y, Srituravanich W, Sun C and Zhang X 2008 Nano Lett. 8 3041
|
[29] |
Steele J M, Liu Z, Wang Y and Zhang X 2006 Opt. Express 14 5664
|
[30] |
Wang L and Xu X 2007 Appl. Phys. A: Mater. Sci. & Process. 89 293
|
[31] |
Guo H, Meyrath T P, Zentgraf T, Liu N, Fu L, Schweizer H and Giessen H 2008 Opt. Express 16 7756
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|