Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 107303    DOI: 10.1088/1674-1056/21/10/107303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Gain-assisted indented plasmonic waveguide for low-threshold nanolaser applications

Liu Jie-Tao (刘杰涛), Xu Bin-Zong (许斌宗), Zhang Jing (张晶), Cai Li-Kang (蔡利康), Song Guo-Feng (宋国峰)
Nano-optoelectronics Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  A subwavelength plasmonic indented waveguide with an active InGaAsP core is proposed. The characteristics of the gap plasmon mode and gain required for lossless propagation are investigated and analyzed by the finite element method. We numerically calculate the normalized mode areas and percentages of energy confined in InGaAsP and metal for plasmonic nanolaser applications. It is shown that the indentation of the sidewalls has an optimal value for which the lasing threshold gain is minimal. The structure could enable low-threshold subwavelength lasing and applications for optoelectronic integrated circuits.
Keywords:  optical waveguide      nanolasers      surface plasmon      gain  
Received:  23 February 2012      Revised:  22 April 2012      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.40.Sx (Metal-semiconductor-metal structures)  
Fund: Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2011CBA00608) and the National Natural Science Foundation of China (Grant Nos. 61036010, 60906027 60906028, and 61036010).
Corresponding Authors:  Song Guo-Feng     E-mail:  sgf@semi.ac.cn

Cite this article: 

Liu Jie-Tao (刘杰涛), Xu Bin-Zong (许斌宗), Zhang Jing (张晶), Cai Li-Kang (蔡利康), Song Guo-Feng (宋国峰) Gain-assisted indented plasmonic waveguide for low-threshold nanolaser applications 2012 Chin. Phys. B 21 107303

[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag)
[3] Ozbay E 2006 Science 311 189
[4] Gramotnev D K and Bozhevolnyi S I 2010 Nature Photon. 4 83
[5] Miyazaki H T and Kurokawa Y 2006 Phys. Rev. Lett. 96 097401
[6] Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nature Photon. 2 496
[7] Oulton R F, Bartal G, Pile D F P and Zhang X 2008 New. J. Phys. 10 105018
[8] Zhu L 2010 IEEE Photon. Technol. Lett. 22 535
[9] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[10] Ning C Z 2010 Phys. Status Solidi B 247 774
[11] Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y C, Sun M H, Veldhoven P J V, Geluk E J, Karouta F, Oei Y S, Notzel R, Ning C Z and Smit M K 2009 Opt. Express 17 11107
[12] Hill M T 2010 J. Opt. Soc. Am. B 27 B36
[13] Shen Y, Fan D H, Fu J W and Yu G P 2011 Acta Phys. Sin. 60 117302 (in Chinese)
[14] Shen Y, Yu G P, Fu J W and Zou L E 2012 Chin. Opt. Lett. 10 021301
[15] Zhu J H, Huang X G and Mei X 2012 Plasmonics 7 93
[16] Palik E D 1985 Handbook of Optical Constants of Solids (New York: Academic Press)
[17] Johnson P B and Christie R W 1972 Phys. Rev. B 6 4370
[18] Nezhad M P, Tetz K and Fainman Y 2004 Opt. Express 12 4072
[19] Zhang J, Cai L K, Bai W L, Xu Y and Song G F 2011 Opt. Lett. 36 2312
[20] Coldren L A and Corzine S W 1995 Diode Lasers and Photonic Integrated Circuits (NJ: Wiley Interscience)
[21] Chang S W, Lin T R and Chuang S L 2010 Opt. Express 18 15039
[22] Bian Y S, Zheng Z, Liu Y, Zhu J S and Zhou T 2011 IEEE Photon. Technol. Lett. 23 884
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[6] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[7] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[8] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[9] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[10] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[11] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[12] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[13] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[14] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[15] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
No Suggested Reading articles found!