Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 098201    DOI: 10.1088/1674-1056/21/9/098201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dynamics of reaction of O with H2 and its isotopic variants in different rotational excited states

Liu Yu-Fang (刘玉芳), Liu Yan-Lei (刘彦磊), Liang Bin (梁斌)
Department of Physics, Henan Normal University, Xinxiang 453007, China
Abstract  Scalar properties and vector correlations of the reactions O+H2 →OH+H, O+HD→OH+D, O+DH→OD+H, and O+D2 →OD+D at collision energies of 25 and 34.6 kcal/mole have been studied via quasi-classical-trajectory (QCT) method based on a BMS1 potential energy surface (PES). Generalized polarization-dependent differential cross section and the distributions of the dihedral angle at the collision energy of 34.6 kacl/mole are presented. The calculated results indicate that both reagent rotational angular momentum and the mass factor have a significant influence on the scalar properties and vector correlations of the title reactions.
Keywords:  quasi-classical-trajectory calculation      rotational excited state      isotopic effect      vector correlation  
Received:  04 December 2011      Revised:  23 April 2012      Accepted manuscript online: 
PACS:  82.30.Cf (Atom and radical reactions; chain reactions; molecule-molecule reactions)  
  82.20.Tr (Kinetic isotope effects including muonium)  
  82.20.Fd (Collision theories; trajectory models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61127012 and 60977063) and the Scientific and Technical Innovation and Troop Construction Projects of Henan Province, China (Grant No. 124200510013).
Corresponding Authors:  Liu Yu-Fang     E-mail:  yf-liu@henannu.edu.cn

Cite this article: 

Liu Yu-Fang (刘玉芳), Liu Yan-Lei (刘彦磊), Liang Bin (梁斌) Dynamics of reaction of O with H2 and its isotopic variants in different rotational excited states 2012 Chin. Phys. B 21 098201

[1] Reynard L M and Donaldson D 2001 Geophys. Res. Lett. 28 2157
[2] Garton D J, Minton T K, Maiti B, Troya D and Schatz G C 2003 J. Chem. Phys. 118 1585
[3] Lin S Y and Guo H 2004 Chem. Phys. Lett. 385 193
[4] Hoffmann M R and Schatz G C 2000 J. Chem. Phys. 113 9456
[5] Johnson B R and Winter N 1977 J. Chem. Phys. 66 4116
[6] Clary D, Connor J and Edge C 1979 Chem. Phys. Lett. 68 154
[7] Alfassi Z B and Baer M 1981 Chem. Phys. 63 275
[8] Balakrishnan N 2004 J. Chem. Phys. 121 6346
[9] Braunstein M, Adler-Golden S, Maiti B and Schatz G 2004 J. Chem. Phys. 120 4316
[10] Chu T S, Zhang X and Han K L 2005 J. Chem. Phys. 122 214301
[11] Broida M and Persky A 1984 J. Chem. Phys. 80 3687
[12] Quéméner G, Balakrishnan N and Kendrick B K 2008 J. Chem. Phys. 129 224309
[13] Wei Q, Li X and Li T 2009 Chin. J. Chem. Phys. 22 523
[14] Liu S L and Shi Y 2010 Chem. Phys. Lett. 501 197
[15] Zhang W, Liu Y and He X 2010 Chem. Phys. Lett. 489 237
[16] Han J, Chen X and Weiner B R 2000 Chem. Phys. Lett. 332 243
[17] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[18] Light G C 1978 J. Chem. Phys. 68 2831
[19] Rogers S, Wang D, Kuppermann A and Walch S 2000 J. Chem. Phys. A 104 2308
[20] Schinke R and Lester Jr W A 1979 J. Chem. Phys. 70 4893
[21] Weck P, Balakrishnan N, Brandao J, Rosa C and Wang W 2006 J. Chem. Phys. 124 074308
[22] Wei Q, Li X and Li T 2010 Chem. Phys. 368 58
[23] Xu Z H and Zong F J 2011 Chin. Phys. B 20 063104
[24] Presser N and Gordon R J 1985 J. Chem. Phys. 82 1291
[25] Schatz G C 1985 J. Chem. Phys. 83 5677
[26] Liu Y F, He X H, Shi D H and Sun J F 2011 Chin. Phys. B 20 078201
[27] Prisant M G, Rettner C T and Zare R N 1981 J. Chem. Phys. 75 2222
[28] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[29] Aoiz F, Brouard M and Enriquez P 1996 J. Chem. Phys. 105 4964
[30] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[31] Shafer-Ray N E, Orr-Ewing A J and Zare R N 1995 J. Phys. Chem. 99 7591
[32] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[33] Li S J, Shi Y, Xie T X and Jin M X 2012 Chin. Phys. B 21 013401
[34] Chen X Q, Wang M S, Yang C L and Wu J C 2012 Chin. Phys. B 21 023402
[1] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[2] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[3] Study on the A2Π3/2u, B2Δ3/2u, and X2Π3/2g states of Cl2+ including its isotopologues
Wu Ling (吴玲), You Su-Ping (尤素萍), Shao Xu-Ping (邵旭萍), Chen Gang-Jin (陈钢进), Ding Ning (丁宁), Wang You-Mei (汪友梅), Yang Xiao-Hua (杨晓华). Chin. Phys. B, 2015, 24(8): 083301.
[4] Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations
Li Yong-Qing (李永庆), Zhang Yong-Jia (张永嘉), Zhao Jin-Feng (赵金峰), Zhao Mei-Yu (赵美玉), Ding Yong (丁勇). Chin. Phys. B, 2015, 24(11): 113402.
[5] Effects of the vibrational and rotational excitation of reagent on the stereodynamics of the reaction S(3P) + H2→SH + H
Shan Guang-Ling (单广玲), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Li Yan-Qing (李艳青). Chin. Phys. B, 2014, 23(6): 068201.
[6] A theoretical study of the stereodynamics on the abstraction reactions H/D+HS/DS
Xu Guo-Liang (徐国亮), Liu Pei (刘培), Liu Yan-Lei (刘彦磊), Liu Yu-Fang (刘玉芳), Yuan Wei (袁伟), Zhang Xian-Zhou (张现周). Chin. Phys. B, 2013, 22(6): 068203.
[7] The effect of the rotational excitation of NO on the stereodynamics for the reaction C(3P) + NO (X2Π)→CN (X2+) +O (3P)
Ma Jian-Jun (马建军), Zou Yong (邹勇), Liu Hou-Tong (刘厚通). Chin. Phys. B, 2013, 22(6): 063402.
[8] The effect of collision energy on the stereo-dynamics of the reaction H(2S)+NH(X3-, v=0, j=0)→N(4S)+H2
He Di (何缔), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Jiang Zhi-Jun (姜志军). Chin. Phys. B, 2013, 22(6): 068201.
[9] The collision energy effect on the stereodynamics of the Ca + HCl→CaCl +H reaction
Wang Li-Zhi (王立志), Yang Chuan-Lu (杨传路), Liang Jing-Juan (梁景娟), Duan Li-Li (段莉莉), Zhang Qing-Gang (张庆刚). Chin. Phys. B, 2013, 22(4): 043101.
[10] Effects of reagent's rotational and vibrational excitations on reaction O(3P) + H2(ν = 0, 3, j = 0, 3, 5, 7, 9, 12, 15) → OH + H
Xu Zeng-Hui (许增慧), Zong Fu-Jian (宗福建), Han Bo-Ran (韩博然), Dong Shao-Hua (董少华), Liu Jian-Qiang (刘建强), Ji Feng (计峰). Chin. Phys. B, 2012, 21(9): 093103.
[11] Stereodynamics of the reactions Ne+H2+ /Ne+D2+/Ne+T2
Xiao Jing(肖静), Yang Chuan-Lu(杨传路), and Wang Mei-Shan(王美山) . Chin. Phys. B, 2012, 21(4): 043101.
[12] Influence of the reagent vibration on the stereo-dynamics of the reactions D- + H2 and H- + D2
Chen Xiao-Qiong(陈肖琼), Wang Mei-Shan(王美山), Yang Chuan-Lu(杨传路), and Wu Ji-Cheng(吴继成) % . Chin. Phys. B, 2012, 21(2): 023402.
[13] Stereo-dynamics of the exchange reaction Ha+LiHb→LiHa+Hb and its isotopic variants
Zhai Hong-Sheng (翟红生), Yin Shu-Hui (尹淑慧). Chin. Phys. B, 2012, 21(12): 128201.
[14] Influence of reagent vibration on the stereodynamics of the Li + HF → LiF + H reaction
Li Shu-Juan(李淑娟), Shi Ying(石英), Xie Ting-Xian(解廷献), and Jin Ming-Xing(金明星) . Chin. Phys. B, 2012, 21(1): 013401.
[15] Stereodynamics of the O(3P) with H2 (D2) ($\nu$=0, j=0) reaction
Liu Yu-Fang(刘玉芳), He Xiao-Hu(和小虎), Shi De-Heng(施德恒), and Sun Jin-Feng(孙金锋). Chin. Phys. B, 2011, 20(7): 078201.
No Suggested Reading articles found!