Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 097101    DOI: 10.1088/1674-1056/21/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, electronic, and magnetic properties of Co-doped ZnO

Bakhtiar Ul Haqa b, A. Afaqa, R. Ahmedb, S. Naseema
a Center of Excellence in Solid State Physics, University of the Punjab, Quid-e-Azam Campus, Lahore-54590, Pakistan;
b Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai Johar Malaysia
Abstract  Density functional theory based calculations have been carried out to study structural, electronic, and magnetic properties of Zn1-xCoxO (x = 0, 0.25, 0.50, 0.75) in the zinc-blende phase, and the generalized gradient approximation proposed by Wu and Cohen has been used. Our calculated lattice constants decrease while the bulk moduli increase with the increase of Co2+ concentration. The calculated spin polarized band structures show the metallic behavior of Co-doped ZnO for both the up and the down spin cases with various doping concentrations. Moreover, the electron population is found to shift from the Zn-O bond to the Co-O bond with the increase of Co2+ concentration. The total magnetic moment, the interstitial magnetic moment, the valence and the conduction band edge spin splitting energies, and the exchange constants decrease, while the local magnetic moments of Zn, Co, O, the exchange spin splitting energies, and crystal field splitting energies increase with the increase of dopant concentration.
Keywords:  density functional theory      magnetic semiconductors      generalized gradient approximation  
Received:  12 January 2012      Revised:  12 March 2012      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  75.50.Pp (Magnetic semiconductors)  
  71.20.Be (Transition metals and alloys)  
Fund: Project supported by the Ministry of Higher Education (MOHE) of Malaysia and the Universiti Teknologi Malaysia (UTM) (Grant Nos. Q.J13000.7126.00J33, R.J130000.7726.4D034, and R.J130000.7826.4F113.)
Corresponding Authors:  R. Ahmed     E-mail:  rashidahmed@utm.my

Cite this article: 

Bakhtiar Ul Haq, A. Afaq, R. Ahmed, S. Naseem Structural, electronic, and magnetic properties of Co-doped ZnO 2012 Chin. Phys. B 21 097101

[1] Ohno H 1998 Science 281 951
[2] Wolf S A, Awschalom D D, Buhman R A, Daughtin J M, Molnar S V, Roues M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[3] Dietl T, Ohno H, Msatsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[4] Sato K and Yoshida H K 2000 Jpn. J. Appl. Phys. 39 L555
[5] Hu S J, Yan S S, Zhao M W and Mei L M 2006 Phys. Rev. B 73 245205
[6] Fritsch D, Schmidt H and Grundmann M 2006 Appl. Phys. Lett. 88 134104
[7] Venkatesan M, Fitzgerald C B, Lunney J G and Coey J M 2004 Phys. Rev. Lett. 93 177206
[8] Liu C, Yun F, Morkoc H and Mater J 2005 Science 16 555
[9] Yan W, Sun Z, Liu Q, Zhongrui L, Shi T, Wang F, Qi Z, Zhang G, Wei S, Zhang H and Chen Z 2007 Appl. Phys. Lett. 90 242509
[10] Brihi N, Takkouk Z and Bouaine A 2007 Mater. Sci. Eng. B 14 6
[11] Belghazi Y, Schmerber G, Colis S, Rehspringer J L, Berrada A and Dinia A 2007 J. Magn. Mater. 310 2092
[12] Ueda K, Tabata H and Kawai T 2001 Appl. Phys. Lett. 79 988
[13] Zhang J, Yao K L, Liu Z L and Gao G Y 2010 Physica B 405 1447
[14] Hohenberg P and Kohn W 1964 Phys. Rev. B 864 136
[15] Kohn W and Sham L S 1965 Phys. Rev. 140 1133
[16] Sjstedt E, Nordstrm L and Singh D J 2000 Solid State Commun. 114 15
[17] Schwarz K, Blaha P and Madsen G K H 2002 Comput. Phys. Commun. 147 71
[18] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K (Vienna: Techn. Universitat)
[19] Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
[20] Jaffe J E and Hess A C 1993 Phys. Rev. B 48 7903
[21] Brich F 1952 J. Geophys. Res. 57 227
[22] Benam M R, Hezari M and Shayan F 2011 International Journal of the Physical Sciences 6 1112
[23] Palacios P, Aguilera I and Wahnn P 2010 Thin Solid Films 518 4568
[24] Rozale H, Lakdja A, Lazreg A and Ruterana P 2010 Phys. Status Solidi B 247 1641
[25] Walsh A, Da Silva J L F and Wei S H 2008 Phys. Rev. Lett. 100 256401
[26] Masek J, Kudrnovsky J and Maca F 2003 Phys. Rev. B 67 153203
[27] Sanvito S, Ordejon P and Hill N A 2001 Phys. Rev. B 63 165206
[28] Echeverria-Arrondo C, Perez-Conde J and Ayuela A 2010 Phys. Rev. B 82 205419
[29] Raebiger H, Ayuela A and Nieminen R M 2004 J. Phys.: Condens. Matter 16 457
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!