Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 094202    DOI: 10.1088/1674-1056/21/9/094202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Long-distance propagation of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence

Qian Xian-Mei (钱仙妹), Zhu Wen-Yue (朱文越), Rao Rui-Zhong (饶瑞中)
Key Laboratory of Atmospheric Composition and Optical Radiation of Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Propagation properties of spatially pseudo-partially coherent Gaussian Schell-model beams through the atmospheric turbulence over a long-distance uplink path are studied by numerical simulation. A linear coordination transformation is introduced to overcome the window effect and the loss-of-resolution problem. The beam spreading, beam wandering, and intensity scintillation as functions of turbulence strength, source correlation length, and change frequency of random phase that models the partial coherence of the source are analyzed. It is found that the beam spreading and the intensity scintillation of the partially coherent beam are less affected by the turbulence than those of the coherent one, but it suffers from severer diffractive effect, and the change frequency of random phase has no evident influence on it. The beam wandering is insensitive to the variation of source correlation length, and decreases firstly then goes to a fixed value as the change frequency increases.
Keywords:  long-distance propagation      pseudo-partially coherent Gaussian Schell-model beam      atmospheric turbulence      numerical simulation  
Received:  23 November 2011      Revised:  12 February 2012      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Kb (Coherence)  
  92.60.Ta (Electromagnetic wave propagation)  
  92.60.hk (Convection, turbulence, and diffusion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61107066 and 40805006).
Corresponding Authors:  Qian Xian-Mei     E-mail:  qianxianmei@aiofm.ac.cn

Cite this article: 

Qian Xian-Mei (钱仙妹), Zhu Wen-Yue (朱文越), Rao Rui-Zhong (饶瑞中) Long-distance propagation of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence 2012 Chin. Phys. B 21 094202

[1] Khmelevtsov S S 1973 Appl. Opt. 12 2421
[2] Flatte S M and Wang G Y 1993 J. Opt. Soc. Am. A 10 2363
[3] Shelton J D 1995 J. Opt. Soc. Am. A 12 2172
[4] Andrews L C, Phillips R L, Sasiela R J and Parenti R 2005 Proc. SPIE 5793 28
[5] Leader J C 1979 J. Opt. Soc. Am. A 69 73
[6] Gbur G and Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[7] Ricklin J C and Davidson F M 2002 J. Opt. Soc. Am. A 19 1794
[8] Shirai T, Dogariu A and Wolf E 2003 J. Opt. Soc. Am. A 20 1094
[9] Dogariu A and Amarande S 2003 Opt. Lett. 28 10
[10] Korotkova O, Andrews L C and Phillips R L 2004 Opt. Eng. 43 330
[11] Ji X L 2011 Acta Phys. Sin. 60 064207 (in Chinese)
[12] Zhang Y T, Ji X L and Lu B D 2009 Chin. Phys. B 18 571
[13] Cang J and Zhang Y X 2009 Acta Phys. Sin. 58 2444 (in Chinese)
[14] Polejaev V I and Ricklin J C 1998 Proc. SPIE 3432 103
[15] Ricklin J C, Davidson F D and Weyrauch T 2001 Proc. SPIE 4538 13
[16] Dogariu A and Amarande S 2003 Opt. Lett. 28 10
[17] Voelz D and Fitzhenry K 2004 Proc. SPIE 5550 218
[18] Xiao X and Voelz D 2006 Proc. SPIE 6304 63040L-1
[19] Qian X M, Zhu W Y and Rao R Z 2009 Opt. Express 17 3782
[20] Xiao X and Voelz D 2006 Opt. Express 14 6986
[21] Coles W A, Filice J P, Frehlich R G and Yadlowsky M 1995 Appl. Opt. 34 2089
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[15] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
No Suggested Reading articles found!