Key Laboratory of Atmospheric Composition and Optical Radiation of Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract Propagation properties of spatially pseudo-partially coherent Gaussian Schell-model beams through the atmospheric turbulence over a long-distance uplink path are studied by numerical simulation. A linear coordination transformation is introduced to overcome the window effect and the loss-of-resolution problem. The beam spreading, beam wandering, and intensity scintillation as functions of turbulence strength, source correlation length, and change frequency of random phase that models the partial coherence of the source are analyzed. It is found that the beam spreading and the intensity scintillation of the partially coherent beam are less affected by the turbulence than those of the coherent one, but it suffers from severer diffractive effect, and the change frequency of random phase has no evident influence on it. The beam wandering is insensitive to the variation of source correlation length, and decreases firstly then goes to a fixed value as the change frequency increases.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.