Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 090303    DOI: 10.1088/1674-1056/21/9/090303
GENERAL Prev   Next  

Multipartite entanglement concentration of electron-spin states with CNOT gates

Ren Bao-Cang (任宝藏), Hua Ming (华明), Li Tao (李涛), Du Fang-Fang (杜芳芳), Deng Fu-Guo (邓富国)
Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
Abstract  We propose a different entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled Bell-type pure state using the CNOT gates and the projection measurements on an additional electron. For each nonlocal N-electron system, Alice first entangles it with the additional electron, and then she projects the additional electron onto an orthogonal basis for dividing the N-electron systems into two groups. In the first group, the N parties obtain a subset of N-electron systems in a maximally entangled state directly. In the second group, they obtain some less-entangled N-electron systems, which are the resource for the entanglement concentration in the next round. By iterating the entanglement concentration process several times, the present ECP has the maximal success probability, which is the theoretical limit of an ECP, equals to the entanglement of the partially entangled state, higher than the others. This ECP may be useful in quantum computers based on electron-spin systems in the future.
Keywords:  entanglement concentration      electron-spin states      decoherence      quantum communication  
Received:  30 March 2012      Revised:  25 April 2012      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974020 and 11174039), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0031), and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Deng Fu-Guo     E-mail:  fgdeng@bnu.edu.cn

Cite this article: 

Ren Bao-Cang (任宝藏), Hua Ming (华明), Li Tao (李涛), Du Fang-Fang (杜芳芳), Deng Fu-Guo (邓富国) Multipartite entanglement concentration of electron-spin states with CNOT gates 2012 Chin. Phys. B 21 090303

[1] Nielsen M A and Chuang I L 2000 Quantum Computa tion and Quantum Information (Cambridge: Cambridge University Press)
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[4] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[5] Zhong P P, Zhang H N, Wang J D, Qin X J, Wei Z J, Chen S and Liu S H 2011 Chin. Phys. B 20 050307
[6] Zou L, Feng Y, Yang Y B, Wang A B, Yang L Z and Zhang J Z 2011 Chin. Phys. B 20 094209
[7] Chen M J and Liu X 2011 Chin. Phys. B 20 100305
[8] Li H W, Yin Z Q, Wang S, Bao W S, Guo G C and Han Z F 2011 Chin. Phys. B 20 100306
[9] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[10] Wang M Y and Yan F L 2011 Chin. Phys. B 20 120309
[11] Zhang J T, He G Q, Ren L J and Zeng G H 2011 Chin. Phys. B 20 050311
[12] Tang J W, Zhao G X and He X H 2011 Chin. Phys. B 20 050312
[13] Wang Z J, Zhang K and Fan C Y 2010 Chin. Phys. B 19 110502
[14] Gao D, Zhao Z S, Zhu A D, Wang H F, Shao X Q and Zhang S 2010 Chin. Phys. B 19 090313
[15] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[16] Liu X S, Long G L, Tong D M and Feng L 2002 Phys. Rev. A 65 022304
[17] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
[18] Yan F L and Gao T 2005 Phys. Rev. A 72 012304
[19] Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
[20] Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302
[21] Zhang Z R, Liu W T and Li C Z 2011 Chin. Phys. B 20 050309
[22] Zhu Z C, Zhang Y Q and Fu A M 2011 Chin. Phys. B 20 040306
[23] Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690
[24] Wang C and Zhang Y 2009 Chin. Phys. B 18 3238
[25] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301
[26] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Eur. Phys. J. D 39 459
[27] Li X H, Zhou P, Li C Y, Zhou H Y and Deng F G 2006 J. Phys. B 39 1975
[28] Man Z X, Xia Y J and An N B 2007 Eur. Phys. J. D 42 333
[29] Wang Z Y, Yuan H, Shi S H and Zhang Z J 2007 Eur. Phys. J. D 41 371
[30] Wang D, Zha X W, Lan Q, Li N and Wei J 2011 Chin. Phys. B 20 090305
[31] Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
[32] Zhou P, Li X H, Deng F G and Zhou H Y 2007 J. Phys. A 40 13121
[33] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[34] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[35] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[36] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[37] Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110311
[38] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[39] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[40] Pan J W, Simon C and Zellinger A 2001 Nature 410 1067
[41] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[42] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[43] Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
[44] Li X H 2010 Phys. Rev. A 82 044304
[45] Deng F G 2011 Phys. Rev. A 83 062316
[46] Deng F G 2011 Phys. Rev. A 84 052312
[47] Wang C, Zhang Y and Jin G S 2011 Quantum Inform. Comput. 11 988
[48] Wang C, Zhang Y and Zhang R 2011 Opt. Express 19 25685
[49] Gu B, Chen Y L, Zhang C Y and Huang Y G 2010 Chin. Phys. Lett. 27 100304
[50] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[51] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[52] Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
[53] Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
[54] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[55] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[56] Sheng Y B, Deng F G and Zhou H Y 2010 Quantum Inform. Comput. 10 272
[57] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[58] Deng F G 2012 Phys. Rev. A 85 022311
[59] Beenakker C W J, Divincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
[60] Field M, Smith C G, Pepper M, Ritchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett. 70 1411
[61] Ionicioiu R 2007 Phys. Rev. A 75 032339
[62] Zhang X L, Feng M and Gao K L 2006 Phys. Rev. A 73 014301
[63] Feng X L, Kwek L C and Oh C H 2005 Phys. Rev. A 71 064301
[64] Sheng Y B, Deng F G and Long G L 2011 Phys. Lett. A 375 396
[65] Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Lett. A 373 1823
[66] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[3] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[4] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[5] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[6] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[9] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[10] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[11] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[12] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[13] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[14] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[15] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
No Suggested Reading articles found!