|
|
Multipartite entanglement concentration of electron-spin states with CNOT gates |
Ren Bao-Cang (任宝藏), Hua Ming (华明), Li Tao (李涛), Du Fang-Fang (杜芳芳), Deng Fu-Guo (邓富国) |
Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China |
|
|
Abstract We propose a different entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled Bell-type pure state using the CNOT gates and the projection measurements on an additional electron. For each nonlocal N-electron system, Alice first entangles it with the additional electron, and then she projects the additional electron onto an orthogonal basis for dividing the N-electron systems into two groups. In the first group, the N parties obtain a subset of N-electron systems in a maximally entangled state directly. In the second group, they obtain some less-entangled N-electron systems, which are the resource for the entanglement concentration in the next round. By iterating the entanglement concentration process several times, the present ECP has the maximal success probability, which is the theoretical limit of an ECP, equals to the entanglement of the partially entangled state, higher than the others. This ECP may be useful in quantum computers based on electron-spin systems in the future.
|
Received: 30 March 2012
Revised: 25 April 2012
Accepted manuscript online:
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974020 and 11174039), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0031), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Deng Fu-Guo
E-mail: fgdeng@bnu.edu.cn
|
Cite this article:
Ren Bao-Cang (任宝藏), Hua Ming (华明), Li Tao (李涛), Du Fang-Fang (杜芳芳), Deng Fu-Guo (邓富国) Multipartite entanglement concentration of electron-spin states with CNOT gates 2012 Chin. Phys. B 21 090303
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computa tion and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[3] |
Deng F G and Long G L 2003 Phys. Rev. A 68 042315
|
[4] |
Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
|
[5] |
Zhong P P, Zhang H N, Wang J D, Qin X J, Wei Z J, Chen S and Liu S H 2011 Chin. Phys. B 20 050307
|
[6] |
Zou L, Feng Y, Yang Y B, Wang A B, Yang L Z and Zhang J Z 2011 Chin. Phys. B 20 094209
|
[7] |
Chen M J and Liu X 2011 Chin. Phys. B 20 100305
|
[8] |
Li H W, Yin Z Q, Wang S, Bao W S, Guo G C and Han Z F 2011 Chin. Phys. B 20 100306
|
[9] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[10] |
Wang M Y and Yan F L 2011 Chin. Phys. B 20 120309
|
[11] |
Zhang J T, He G Q, Ren L J and Zeng G H 2011 Chin. Phys. B 20 050311
|
[12] |
Tang J W, Zhao G X and He X H 2011 Chin. Phys. B 20 050312
|
[13] |
Wang Z J, Zhang K and Fan C Y 2010 Chin. Phys. B 19 110502
|
[14] |
Gao D, Zhao Z S, Zhu A D, Wang H F, Shao X Q and Zhang S 2010 Chin. Phys. B 19 090313
|
[15] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[16] |
Liu X S, Long G L, Tong D M and Feng L 2002 Phys. Rev. A 65 022304
|
[17] |
Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
|
[18] |
Yan F L and Gao T 2005 Phys. Rev. A 72 012304
|
[19] |
Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
|
[20] |
Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302
|
[21] |
Zhang Z R, Liu W T and Li C Z 2011 Chin. Phys. B 20 050309
|
[22] |
Zhu Z C, Zhang Y Q and Fu A M 2011 Chin. Phys. B 20 040306
|
[23] |
Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690
|
[24] |
Wang C and Zhang Y 2009 Chin. Phys. B 18 3238
|
[25] |
Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301
|
[26] |
Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Eur. Phys. J. D 39 459
|
[27] |
Li X H, Zhou P, Li C Y, Zhou H Y and Deng F G 2006 J. Phys. B 39 1975
|
[28] |
Man Z X, Xia Y J and An N B 2007 Eur. Phys. J. D 42 333
|
[29] |
Wang Z Y, Yuan H, Shi S H and Zhang Z J 2007 Eur. Phys. J. D 41 371
|
[30] |
Wang D, Zha X W, Lan Q, Li N and Wei J 2011 Chin. Phys. B 20 090305
|
[31] |
Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
|
[32] |
Zhou P, Li X H, Deng F G and Zhou H Y 2007 J. Phys. A 40 13121
|
[33] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[34] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[35] |
Deng F G and Long G L 2004 Phys. Rev. A 69 052319
|
[36] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[37] |
Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110311
|
[38] |
Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
|
[39] |
Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
|
[40] |
Pan J W, Simon C and Zellinger A 2001 Nature 410 1067
|
[41] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
|
[42] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
|
[43] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
|
[44] |
Li X H 2010 Phys. Rev. A 82 044304
|
[45] |
Deng F G 2011 Phys. Rev. A 83 062316
|
[46] |
Deng F G 2011 Phys. Rev. A 84 052312
|
[47] |
Wang C, Zhang Y and Jin G S 2011 Quantum Inform. Comput. 11 988
|
[48] |
Wang C, Zhang Y and Zhang R 2011 Opt. Express 19 25685
|
[49] |
Gu B, Chen Y L, Zhang C Y and Huang Y G 2010 Chin. Phys. Lett. 27 100304
|
[50] |
Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[51] |
Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
|
[52] |
Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
|
[53] |
Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
|
[54] |
Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
|
[55] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
|
[56] |
Sheng Y B, Deng F G and Zhou H Y 2010 Quantum Inform. Comput. 10 272
|
[57] |
Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
|
[58] |
Deng F G 2012 Phys. Rev. A 85 022311
|
[59] |
Beenakker C W J, Divincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
|
[60] |
Field M, Smith C G, Pepper M, Ritchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett. 70 1411
|
[61] |
Ionicioiu R 2007 Phys. Rev. A 75 032339
|
[62] |
Zhang X L, Feng M and Gao K L 2006 Phys. Rev. A 73 014301
|
[63] |
Feng X L, Kwek L C and Oh C H 2005 Phys. Rev. A 71 064301
|
[64] |
Sheng Y B, Deng F G and Long G L 2011 Phys. Lett. A 375 396
|
[65] |
Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Lett. A 373 1823
|
[66] |
Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|