Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 080507    DOI: 10.1088/1674-1056/21/8/080507
GENERAL Prev   Next  

Ultrashort optical solitons in the dispersion-decreasing fibers

Dai Chao-Qing (戴朝卿), Chen Jun-Lang (陈均朗 )
School of Sciences, Zhejiang Agricultural and Forestry University, Lin'an 311300, China
Abstract  We derive analytical bright and dark solitons of the modified nonlinear Schrödinger equations with variable coefficients. Under constraint condition between system parameters, the optical soliton transmission in the dispersion-decreasing fibers can be exactly controlled by proper dispersion management. The analytical description of the interactions between the bright and dark solitons are firstly obtained.
Keywords:  nonlinear Schrö      dinger equation      soliton interaction and control      dispersion decreasing fibers  
Received:  28 September 2011      Revised:  23 April 2012      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the National Natural Science Foundations of China (Grant No. 11005092), the Program for Innovative Research Team of Young Teachers (Grant No. 2009RC01), and the Scientific Research and Developed Fund of Zhejiang Agricultural and Forestry University (Grant No. 2009FK42).
Corresponding Authors:  Dai Chao-Qing     E-mail:  dcq424@126.com

Cite this article: 

Dai Chao-Qing (戴朝卿), Chen Jun-Lang (陈均朗 ) Ultrashort optical solitons in the dispersion-decreasing fibers 2012 Chin. Phys. B 21 080507

[1] Liu S K, Zhao Q and Liu S D 2011 Chin. Phys. B 20 040202
[2] Yang Z, Ma S H and Fang J P 2011 Acta Phys. Sin. 60 040508 (in Chinese)
[3] Jiang L H, Ma S H, Fang J P and Wu H Y 2012 Acta Phys. Sin. 61 020510 (in Chinese)
[4] Lei J, Ma S H and Fang J P 2011 Acta Phys. Sin. 60 120507 (in Chinese)
[5] Li B Q, Ma Y L, Wang C, Xu M P and Li Y 2011 Acta Phys. Sin. 60 060203 (in Chinese)
[6] Liu Y and Liu W Q 2011 Acta Phys. Sin. 60 120202 (in Chinese)
[7] Hasegawa A and Tappet F 1973 Appl. Phys. Lett. 23 142
[8] Agrawal G P 1993 Nonlinear Fiber Optics (New York: Academic Press)
[9] Abdullaeev F 1994 Theory of Solitons in Inhomogeneous Media (New York: Wiley)
[10] Qian C, Wang L L and Zhang J F 2011 Acta Phys. Sin. 60 064214 (in Chinese)
[11] Dai C Q, Wang Y Y, Tian Q and Zhang J F 2012 Ann. Phys. (NY) 327 512
[12] Hua W and Liu X S 2011 Acta Phys. Sin. 60 110210 (in Chinese)
[13] Dai C Q, Wang Y Y and Zhang J F 2010 Opt. Lett. 35 1437
[14] Tajima K 1987 Opt. Lett. 12 54
[15] Finot C, Barviau B, Millot G, Guryanov A, Sysoliatin A and Wabnitz S 2007 Opt. Express 15 15824
[16] Taylor J R 1992 Optical Solitons: Theory and Experiment (Cambridge: Cambridge University Press)
[17] Zhang H Q, Tian B, Liu W J and Xue Y S 2010 Eur. Phys. J. D 59 443
[18] Chen X J, Yang J and Lan W K 2006 J. Phys. A: Math. Gen. 39 3263
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[8] Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers
Tian-Yi Wang(王天一), Qin Zhou(周勤), and Wen-Jun Liu(刘文军). Chin. Phys. B, 2022, 31(2): 020501.
[9] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[10] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[11] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[12] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[13] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[14] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[15] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
No Suggested Reading articles found!