Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070303    DOI: 10.1088/1674-1056/21/7/070303
GENERAL Prev   Next  

Exact solutions of the Klein–Gordon equation with ring-shaped oscillator potential by using the Laplace integral transform

Sami Ortakaya
Institute of Natural and Applied Sciences, Erciyes University, 38039 Kayseri, Turkey
Abstract  We present exact solutions for the Klein--Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central oscillator potential. The angular functions are expressed in terms of the hypergeometric functions. The radial eigenfunctions have been obtained by using the Laplace integral transform. By means of the Laplace transform method, which is efficient and simple, the radial Klein--Gordon equation is reduced to a first-order differential equation.
Keywords:  ring-shaped oscillator      Klein--Gordon equation      Laplace integral transform      bound states  
Received:  29 November 2011      Revised:  03 January 2012      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
Corresponding Authors:  Sami Ortakaya     E-mail:  samiortakaya@gmail.com

Cite this article: 

Sami Ortakaya Exact solutions of the Klein–Gordon equation with ring-shaped oscillator potential by using the Laplace integral transform 2012 Chin. Phys. B 21 070303

[1] Alhaidari A, Bahlouli B and Al-Hasan A 2006 Phys. Lett. A 349 87
[2] Diao Y F, Yi L Z and Jia C S 2004 Phys. Lett. A 332 157
[3] Chen G, Chen Z and Lou Z M 2004 Chin. Phys. 13 279
[4] Qiang W C 2003 Chin. Phys. 12 136
[5] Levai G 1992 J. Phys. A: Math. Gen. 25 L521
[6] Yasuk F, Berkdemir C, Berkdemir A and Önem C 2005 Phys. Scr. 71 340
[7] Yasuk F and Durmus A 2008 Phys. Scr. 77 015005
[8] Quesne C A 1988 J. Phys. A: Math. Gen. 21 3093
[9] Durmus A and Yasuk F 2007 J. Chem. Phys. 126 074108
[10] Chen G 2004 Phys. Lett. A 326 55
[11] Chen G 2004 Phys. Lett. A 328 123
[12] Chen G 2005 Phys. Scr. 71 233
[13] Ran Y, Xue L, Hu S and Su R K 2000 J. Phys. A: Math. Gen. 33 9265
[14] Schiff J L 1999 The Laplace Transform: Theory and Applications (New York: Springer) p. 233
[15] Chen C Y, Liu C L and Lu F L 2010 Phys. Lett. A 374 1346
[16] Gradshteyn I S and Ryzhik I M 2007 Table of Integrals, Series, and Products (New York: Academic Press) p. 1171
[17] Abramowitz M and Stegun I 1972 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (Wa: Dover Publications) p. 1058
[18] Lebedev N N 1965 Special Functions and Their Applications (New York: Prentice-Hall) p. 308
[1] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[2] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[3] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[4] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[5] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[6] Detection of spin current through a quantum dot with Majorana bound states
Ning Wang(王宁), Xingtao An(安兴涛), and Shuhui Lv(吕树慧). Chin. Phys. B, 2021, 30(10): 100302.
[7] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[8] Bound in continuum states and induced transparency in mesoscopic demultiplexer with two outputs
Z Labdouti, T Mrabti, A Mouadili, E H El Boudouti, F Fethi, and B Djafari-Rouhani. Chin. Phys. B, 2020, 29(12): 127301.
[9] Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential
Ahmet Taş, Ali Havare. Chin. Phys. B, 2017, 26(10): 100301.
[10] Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
Mohsen Yarmohammadi, Malek Zareyan. Chin. Phys. B, 2016, 25(6): 068105.
[11] Resonant Andreev reflection in a normal-metal/quantum-dot/superconductor system with coupled Majorana bound states
Su-Xin Wang(王素新), Yu-Xian Li(李玉现), Jian-Jun Liu(刘建军). Chin. Phys. B, 2016, 25(3): 037304.
[12] Particle-hole bound states of dipolar molecules in an optical lattice
Zhang Yi-Cai (张义财), Wang Han-Ting (汪汉廷), Shen Shun-Qing (沈顺清), Liu Wu-Ming (刘伍明). Chin. Phys. B, 2013, 22(9): 090501.
[13] Relativistic solutions for diatomic molecules subject to pseudoharmonic oscillator in arbitrary dimensions
Sami Ortakaya. Chin. Phys. B, 2013, 22(7): 070303.
[14] Quantum information entropies of the eigenstates for the Pöschl-Teller-like potential
Guo-Hua Sun, M. Avila Aoki, Shi-Hai Dong. Chin. Phys. B, 2013, 22(5): 050302.
[15] Pure spin polarized transport based on Rashba spin–orbit interaction through the Aharonov–Bohm interferometer embodied four-quantum-dot ring
Wu Li-Jun (吴丽君), Han Yu (韩宇). Chin. Phys. B, 2013, 22(4): 047302.
No Suggested Reading articles found!