Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 077803    DOI: 10.1088/1674-1056/21/7/077803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of polarization direction, incidence angle, and geometry on near-field enhancement in two-layered gold nanowires

Wu Da-Jian(吴大建)a)b), Jiang Shu-Min(蒋书敏)b), and Liu Xiao-Jun(刘晓峻)a)
a School of Physics, Nanjing University, Nanjing 210093, China;
b Faculty of Science, Jiangsu University, Zhenjiang 212013, China
Abstract  The influences of polarization direction, incidence angle, and geometry on the near-field enhancements in two-layered gold nanowires (TGNWs) have been investigated by using the vector wave function method. When the polarization direction is perpendicular to the incidence plane, the local field factor (LFF) in TGNW decreases first and then increases with the increase of the incidence angle. The minimum LFF is observed at the incidence angle of 41?. It is found that the increase of the dielectric constant of the inner core leads to the decrease of LFF. With the increase of the inner core radius, the LFF in TGNW increases first and then decreases, and the maximum LFF is observed at the inner core radius of 27 nm. On the other hand, when the polarization direction is parallel to the incidence plane, the collective motions of the induced electrons are enhanced gradually with the decrease of the incidence angle, and hence the near-field enhancement is increased.
Keywords:  gold nanowire      localized surface plasmon resonance      near-field enhancement  
Received:  29 January 2012      Revised:  29 February 2012      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  36.40.Vz (Optical properties of clusters)  
  73.22.Lp (Collective excitations)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11174113, 10904052 and 11074124), and the PAPD of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Liu Xiao-Jun     E-mail:  liuxiaojun@nju.edu.cn

Cite this article: 

Wu Da-Jian(吴大建), Jiang Shu-Min(蒋书敏), and Liu Xiao-Jun(刘晓峻) Influence of polarization direction, incidence angle, and geometry on near-field enhancement in two-layered gold nanowires 2012 Chin. Phys. B 21 077803

[1] Zuloaga J, Prodan E and Nordlander P 2010 ACS Nano 4 5269
[2] Solis D, Chang W S, Khanal B P, Bao K, Nordlander P, Zubarev E R and Link S 2010 Nano Lett. 10 3482
[3] Kim K, Yoon S J and Kim D 2006 Opt. Express 14 12419
[4] Wang Q Q, Han J B, Gong H M, Chen D J, Zhao X J, Feng J Y and Ren J J 2006 Adv. Funct. Mater. 16 2405
[5] Neubrech F, Kolb T, Lovrincic R, Fahsold G, Pucci A, Aizpurua J, Cornelius T W, Toimil-Molares M E, Neumann R and Karim S 2006 Appl. Phys. Lett. 89 253104
[6] Verhagen E, Spasenovic M, Polman A and Kuipers L 2009 Phys. Rev. Lett. 102 203904
[7] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer)
[8] Zong R L, Zhou J, Li B, Fu M, Shi S K and Li L T 2005 J. Chem. Phys. 123 094710
[9] Podolskiy V A 2003 Opt. Express 11 735
[10] Hendren W R, Murphy A, Evans P, O'Connor D, Wurtz G A, Zayats A V, Atkinson R and Pollard R J 2008 J. Phys.: Condens. Matter 20 362203
[11] Wu D J, Liu X J and Li B 2011 J. Appl. Phys. 109 083540
[12] Giannini V and S醤chez-Gil J A 2007 J. Opt. Soc. Am. A 24 2822
[13] Ruda H E and Shik A 2005 Phys. Rev. B 72 115308
[14] Averitt R D, Westcott S L and Halas N J 1999 J. Opt. Soc. Am. B 16 1824
[15] Wu D J and Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese)
[16] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[17] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley)
[18] Gurwich I, Shiloah N and Kleiman M 1999 J. Quan. Spect. Radi. Tran. 63 217
[19] Evanoff D D and Chumanov G 2004 J. Phys. Chem. B 108 13957
[20] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[21] Prodan E, Radloof C, Halas N J and Nordlander P 2003 Science 302 419
[22] Moradi A 2008 J. Phys. Chem. Solids 69 2936
[23] Prodan E and Nordlander P 2004 J. Chem. Phys. 120 5444
[24] Prodan E, Lee A and Nordlander P 2002 Chem. Phys. Lett. 360 325
[1] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[2] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[3] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[4] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[5] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[6] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[7] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[8] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[9] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
[10] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
[11] Investigation of mechanical properties of twin gold crystal nanowires under uniaxial load by molecular dynamics method
Guo-Wei Zhang(张国伟), Zai-Lin Yang(杨在林), Gang Luo(罗刚). Chin. Phys. B, 2016, 25(8): 086203.
[12] Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Chen Dong (陈栋), Fang Yun-Tuan (方云团), Chen Ming-Yang (陈明阳). Chin. Phys. B, 2015, 24(8): 087301.
[13] The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm
Hao Jing-Yu (郝敬昱), Xu Ying (徐颖), Zhang Yu-Pei (张玉佩), Chen Shu-Fen (陈淑芬), Li Xing-Ao (李兴鳌), Wang Lian-Hui (汪联辉), Huang Wei (黄维). Chin. Phys. B, 2015, 24(4): 045201.
[14] Deep-ultraviolet surface plasmon resonance of Al and Alcore/Al2O3shell nanosphere dimers for surface-enhanced spectroscopy
Ci Xue-Ting (慈雪婷), Wu Bo-Tao (吴伯涛), Song Min (宋敏), Chen Geng-Xu (陈耿旭), Liu Yan (刘岩), Wu E (武愕), Zeng He-Ping (曾和平). Chin. Phys. B, 2014, 23(9): 097303.
[15] Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平). Chin. Phys. B, 2014, 23(8): 087303.
No Suggested Reading articles found!